Snarks with Special Spanning Trees

被引:0
|
作者
Arthur Hoffmann-Ostenhof
Thomas Jatschka
机构
[1] Technische Universität Wien,Institute of Logic and Computation
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Cubic graph; Snark; Spanning tree; Hist; 3-Edge coloring;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a cubic graph which has a decomposition into a spanning tree T and a 2-regular subgraph C, i.e. E(T)∪E(C)=E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(T) \cup E(C) = E(G)$$\end{document} and E(T)∩E(C)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(T) \cap E(C) = \emptyset $$\end{document}. We provide an answer to the following question: which lengths can the cycles of C have if G is a snark? Note that T is a hist (i.e. a spanning tree without a vertex of degree two) and that every cubic graph with a hist has the above decomposition.
引用
收藏
页码:207 / 219
页数:12
相关论文
共 50 条
  • [41] On spanning cycles, paths and trees
    Mukwembi, Simon
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2217 - 2222
  • [42] Globally balancing spanning trees
    Hoersch, Florian
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 109
  • [43] Spanning Distribution Trees of Graphs
    Kawabata, Masaki
    Nishizeki, Takao
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (03): : 406 - 412
  • [44] Some Results on Spanning Trees
    Yao, Bing
    Zhang, Zhong-fu
    Wang, Jian-fang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (04): : 607 - 616
  • [45] STRUCTURED SPANNING-TREES
    ANCONA, M
    DEFLORIANI, I
    DEOGUN, JS
    COMPUTER JOURNAL, 1990, 33 (04): : 344 - 355
  • [46] Spanning trees with small diameters
    Kano, Mikio
    Matsumura, Hajime
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 329 - 334
  • [47] Ramsey Spanning Trees and their Applications
    Abraham, Ittai
    Chechik, Shiri
    Elkin, Michael
    Filtser, Arnold
    Neiman, Ofer
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1650 - 1664
  • [48] Ramsey Spanning Trees and Their Applications
    Abraham, Ittai
    Chechik, Shiri
    Elkin, Michael
    Filtser, Arnold
    Neiman, Ofer
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (02)
  • [49] SPANNING TREES AND ASPECTS OF CLUSTERING
    HUBERT, L
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1974, 27 (MAY): : 14 - 28
  • [50] On generalized minimum spanning trees
    Feremans, C
    Labbé, M
    Laporte, G
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 134 (02) : 457 - 458