Snarks with Special Spanning Trees

被引:0
|
作者
Arthur Hoffmann-Ostenhof
Thomas Jatschka
机构
[1] Technische Universität Wien,Institute of Logic and Computation
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Cubic graph; Snark; Spanning tree; Hist; 3-Edge coloring;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a cubic graph which has a decomposition into a spanning tree T and a 2-regular subgraph C, i.e. E(T)∪E(C)=E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(T) \cup E(C) = E(G)$$\end{document} and E(T)∩E(C)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(T) \cap E(C) = \emptyset $$\end{document}. We provide an answer to the following question: which lengths can the cycles of C have if G is a snark? Note that T is a hist (i.e. a spanning tree without a vertex of degree two) and that every cubic graph with a hist has the above decomposition.
引用
收藏
页码:207 / 219
页数:12
相关论文
共 50 条
  • [31] Spanning trees and optimization problems
    Silva, D
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2006, 57 (02) : 227 - 228
  • [32] Spanning trees in dense graphs
    Komlós, J
    Sárközy, GN
    Szemerédi, E
    COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (05): : 397 - 416
  • [33] ON THE DIAMETERS OF SPANNING-TREES
    SANKARAN, V
    KRISHNAMOORTHY, V
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (10): : 1060 - 1062
  • [34] The number of spanning trees in a superprism
    Bogdanowicz, Zbigniew R.
    DISCRETE MATHEMATICS LETTERS, 2024, 13 : 66 - 73
  • [35] Spanning trees with many leaves
    Karpov D.V.
    Journal of Mathematical Sciences, 2011, 179 (5) : 616 - 620
  • [36] Leafy spanning trees in hypercubes
    Duckworth, W
    Dunne, PE
    Gibbons, AM
    Zito, M
    APPLIED MATHEMATICS LETTERS, 2001, 14 (07) : 801 - 804
  • [37] ON INDEPENDENT SPANNING-TREES
    KHULLER, S
    SCHIEBER, B
    INFORMATION PROCESSING LETTERS, 1992, 42 (06) : 321 - 323
  • [38] ENDS IN SPANNING-TREES
    YU, XX
    DISCRETE MATHEMATICS, 1992, 104 (03) : 327 - 328
  • [39] Some results on spanning trees
    Bing Yao
    Zhong-fu Zhang
    Jian-fang Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 607 - 616
  • [40] The number of spanning trees of a graph
    Kinkar C Das
    Ahmet S Cevik
    Ismail N Cangul
    Journal of Inequalities and Applications, 2013