Snarks with Special Spanning Trees

被引:2
|
作者
Hoffmann-Ostenhof, Arthur [1 ]
Jatschka, Thomas [1 ]
机构
[1] Tech Univ Wien, Inst Log & Computat, Vienna, Austria
基金
奥地利科学基金会;
关键词
Cubic graph; Snark; Spanning tree; Hist; 3-Edge coloring; GRAPHS;
D O I
10.1007/s00373-018-1973-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a cubic graph which has a decomposition into a spanning tree T and a 2-regular subgraph C, i.e. E(T)E(C)=E(G) and E(T)E(C)=empty set. We provide an answer to the following question: which lengths can the cycles of C have if G is a snark? Note that T is a hist (i.e. a spanning tree without a vertex of degree two) and that every cubic graph with a hist has the above decomposition.
引用
收藏
页码:207 / 219
页数:13
相关论文
共 50 条
  • [1] Snarks with Special Spanning Trees
    Arthur Hoffmann-Ostenhof
    Thomas Jatschka
    Graphs and Combinatorics, 2019, 35 : 207 - 219
  • [2] Independent Spanning Trees on Special BC Networks
    Cheng, Baolei
    Fan, Jianxi
    Yang, Jiwen
    Wang, Yan
    Zhang, Shukui
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY, PTS 1-4, 2013, 263-266 : 3301 - 3305
  • [3] Special classes of snarks
    Cavicchioli, A
    Murgolo, TE
    Ruini, B
    Spaggiari, F
    ACTA APPLICANDAE MATHEMATICAE, 2003, 76 (01) : 57 - 88
  • [4] Special Classes of Snarks
    A. Cavicchioli
    T. E. Murgolo
    B. Ruini
    F. Spaggiari
    Acta Applicandae Mathematica, 2003, 76 : 57 - 88
  • [5] Generating formulas of the number of spanning trees of some special graphs
    S. N. Daoud
    The European Physical Journal Plus, 129
  • [6] Generating formulas of the number of spanning trees of some special graphs
    Daoud, S. N.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (07):
  • [7] Spanning Trees
    Akiyama, Jin
    Kano, Mikio
    FACTORS AND FACTORIZATIONS OF GRAPHS: PROOF TECHNIQUES IN FACTOR THEORY, 2011, 2031 : 295 - 336
  • [8] SPANNING TREES
    不详
    JOURNAL OF HUMANISTIC MATHEMATICS, 2021, 11 (02): : 481 - 482
  • [9] From Spanning Trees to Meshed Trees
    Acharya, H. B.
    Hamilton, John
    Shenoy, Nirmala
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [10] Spanning Trees: A Survey
    Kenta Ozeki
    Tomoki Yamashita
    Graphs and Combinatorics, 2011, 27 : 1 - 26