Snarks with Special Spanning Trees

被引:2
|
作者
Hoffmann-Ostenhof, Arthur [1 ]
Jatschka, Thomas [1 ]
机构
[1] Tech Univ Wien, Inst Log & Computat, Vienna, Austria
基金
奥地利科学基金会;
关键词
Cubic graph; Snark; Spanning tree; Hist; 3-Edge coloring; GRAPHS;
D O I
10.1007/s00373-018-1973-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a cubic graph which has a decomposition into a spanning tree T and a 2-regular subgraph C, i.e. E(T)E(C)=E(G) and E(T)E(C)=empty set. We provide an answer to the following question: which lengths can the cycles of C have if G is a snark? Note that T is a hist (i.e. a spanning tree without a vertex of degree two) and that every cubic graph with a hist has the above decomposition.
引用
收藏
页码:207 / 219
页数:13
相关论文
共 50 条
  • [41] On spanning cycles, paths and trees
    Mukwembi, Simon
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2217 - 2222
  • [42] Globally balancing spanning trees
    Hoersch, Florian
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 109
  • [43] Spanning Distribution Trees of Graphs
    Kawabata, Masaki
    Nishizeki, Takao
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (03): : 406 - 412
  • [44] Some Results on Spanning Trees
    Yao, Bing
    Zhang, Zhong-fu
    Wang, Jian-fang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (04): : 607 - 616
  • [45] STRUCTURED SPANNING-TREES
    ANCONA, M
    DEFLORIANI, I
    DEOGUN, JS
    COMPUTER JOURNAL, 1990, 33 (04): : 344 - 355
  • [46] Spanning trees with small diameters
    Kano, Mikio
    Matsumura, Hajime
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 329 - 334
  • [47] Ramsey Spanning Trees and their Applications
    Abraham, Ittai
    Chechik, Shiri
    Elkin, Michael
    Filtser, Arnold
    Neiman, Ofer
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1650 - 1664
  • [48] Ramsey Spanning Trees and Their Applications
    Abraham, Ittai
    Chechik, Shiri
    Elkin, Michael
    Filtser, Arnold
    Neiman, Ofer
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (02)
  • [49] SPANNING TREES AND ASPECTS OF CLUSTERING
    HUBERT, L
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1974, 27 (MAY): : 14 - 28
  • [50] On generalized minimum spanning trees
    Feremans, C
    Labbé, M
    Laporte, G
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 134 (02) : 457 - 458