Clar and Fries numbers for benzenoids

被引:0
|
作者
Jack E. Graver
Elizabeth J. Hartung
Ahmed Y. Souid
机构
[1] Syracuse University,
[2] Massachusetts College of Liberal Arts,undefined
来源
关键词
Benzenoids; Fullerenes; Conjugated 6-circuits; Fries structure; Clar structure; Kekulé structure;
D O I
暂无
中图分类号
学科分类号
摘要
A Kekulé structure of a benzenoid or a fullerene Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a set of edges K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} such that each vertex of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is incident with exactly one edge in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. The set of faces in Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} that have exactly three edges in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} are called the benzene faces of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. The Fries number of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is the maximum number of benzene faces over all possible Kekulé structures for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. The Clar number is the maximum number of independent benzene faces over all possible Kekulé structures for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. It is often assumed, but never proved, that some set of independent benzene faces giving the Clar number is a subset of a set of benzene faces giving the Fries number. In Hartung (The Clar structure of fullerenes, Ph.D. Dissertation. Syracuse University, 2012) it is shown that this assumption is false for a large class of fullerenes. In this paper, we prove that this assumption is valid for a large a class of benzenoids.
引用
收藏
页码:1981 / 1989
页数:8
相关论文
共 50 条
  • [31] MONACO,CLAR
    BONESTEEL, M
    ART IN AMERICA, 1984, 72 (03): : 167 - 167
  • [32] Kekul,an benzenoids
    Graver, Jack E.
    Hartung, Elizabeth J.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (03) : 977 - 989
  • [33] Clar structures, Clar covers and Kekule index of dendrimer nanostars
    Ashrafi, A. R.
    Amini, K.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2010, 4 (06): : 877 - 880
  • [34] ON CLAR GRAPHS
    HANSEN, P
    ZHENG, ML
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1993, 98 : 41 - 46
  • [35] RESONANCE ENERGIES AND AROMATICITY OF SOME BENZENOIDS AND NON-BENZENOIDS
    SHARMA, SC
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1978, 259 (06): : 1031 - 1036
  • [36] Algebraic Clar Formulas - Numerical Representation of Clar Structural Formula
    Randic, Milan
    Plavsic, Dejan
    ACTA CHIMICA SLOVENICA, 2011, 58 (03) : 448 - 457
  • [37] Convexity Deficit of Benzenoids
    Basic, Nino
    Berkemer, Sarah J.
    Fallmann, Jorg
    Fowler, Patrick W.
    Gatter, Thomas
    Pisanki, Tomaz
    Retzlaff, Nancy
    Stadler, Peter F.
    Zemljic, Sara Sabrina
    CROATICA CHEMICA ACTA, 2019, 92 (04) : 457 - 466
  • [38] Resonance in elemental benzenoids
    Texas A and M Univ. at Galveston, Galveston, TX 77553-1675, United States
    Discrete Appl Math, 1-3 (157-173):
  • [39] FRIES! FRIES! / Raven
    Bertin, Raymond
    JEU-REVUE DE THEATRE, 2013, 146 : 21 - 22
  • [40] Resonance in elemental benzenoids
    Klein, DJ
    Zhu, H
    DISCRETE APPLIED MATHEMATICS, 1996, 67 (1-3) : 157 - 173