Kekul,an benzenoids

被引:7
|
作者
Graver, Jack E. [1 ]
Hartung, Elizabeth J. [2 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Massachusetts Coll Liberal Arts, North Adams, MA 01247 USA
关键词
Benzenoids; Graphene patches; Fullerenes; Conjugated; 6-circuits; Benzene rings; Benzene faces; Fries number; Clar number; Kekule structure; HEXAGONAL SYSTEMS;
D O I
10.1007/s10910-013-0304-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A Kekul, structure for a benzenoid or a fullerene is a set of edges such that each vertex of is incident with exactly one edge in , i.e. a perfect matching. All fullerenes admit a Kekul, structure; however, this is not true for benzenoids. In this paper, we develop methods for deciding whether or not a given benzenoid admits a Kekul, structure by constructing Kekul, structures that have a high density of benzene rings. The benzene rings of the Kekul, structure are the faces in that have exactly three edges in . The Fries number of is the maximum number of benzene rings over all possible Kekul, structures for and the set of benzene rings giving the Fries number is called a Fries set. The Clar number is the maximum number of independent benzene rings over all possible Kekul, structures for and the set of benzene rings giving the Clar number is called a Clar set. Our method of constructing Kekul, structures for benzenoids generally gives good estimates for the Clar and Fries numbers, often the exact values.
引用
收藏
页码:977 / 989
页数:13
相关论文
共 50 条
  • [1] Kekuléan benzenoids
    Jack E. Graver
    Elizabeth J. Hartung
    Journal of Mathematical Chemistry, 2014, 52 : 977 - 989
  • [2] On the anti-Kekulé number and anti-forcing number of cata-condensed benzenoids
    Damir Vukičević
    Nenad Trinajstić
    Journal of Mathematical Chemistry, 2008, 43 : 719 - 726
  • [3] Partitioning of π-electrons in Rings of Polycyclic Conjugated Hydrocarbons. Part 4. Benzenoids with More Than One Geometric Kekulé Structure Corresponding to the Same Algebraic Kekulé Structure
    Damir Vukicevic
    Milan Randic
    Alexandru T. Balaban
    Journal of Mathematical Chemistry, 2004, 36 : 271 - 279
  • [4] Isoresonant benzenoids
    Zivkovic, TP
    Schmalz, TG
    Klein, DJ
    POLYCYCLIC AROMATIC COMPOUNDS, 2000, 18 (01) : 13 - 24
  • [5] ELEMENTAL BENZENOIDS
    KLEIN, DJ
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (02): : 453 - 459
  • [6] On Kekul, structures count
    Cigher, S.
    Vukicevic, D.
    Diudea, M. V.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 45 (02) : 279 - 286
  • [7] RESONANCE ENERGIES AND AROMATICITY OF SOME BENZENOIDS AND NON-BENZENOIDS
    SHARMA, SC
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1978, 259 (06): : 1031 - 1036
  • [8] On Kekulé structures count
    S. Cigher
    D. Vukičević
    M. V. Diudea
    Journal of Mathematical Chemistry, 2009, 45 : 279 - 286
  • [9] Convexity Deficit of Benzenoids
    Basic, Nino
    Berkemer, Sarah J.
    Fallmann, Jorg
    Fowler, Patrick W.
    Gatter, Thomas
    Pisanki, Tomaz
    Retzlaff, Nancy
    Stadler, Peter F.
    Zemljic, Sara Sabrina
    CROATICA CHEMICA ACTA, 2019, 92 (04) : 457 - 466
  • [10] Resonance in elemental benzenoids
    Texas A and M Univ. at Galveston, Galveston, TX 77553-1675, United States
    Discrete Appl Math, 1-3 (157-173):