Convexity Deficit of Benzenoids

被引:2
|
作者
Basic, Nino [1 ,2 ,3 ]
Berkemer, Sarah J. [4 ,5 ,6 ]
Fallmann, Jorg [4 ,5 ]
Fowler, Patrick W. [7 ]
Gatter, Thomas [4 ,5 ]
Pisanki, Tomaz [1 ,2 ,3 ,13 ]
Retzlaff, Nancy [4 ,5 ,6 ,8 ]
Stadler, Peter F. [4 ,5 ,6 ,9 ,10 ,11 ]
Zemljic, Sara Sabrina [1 ,12 ]
机构
[1] Univ Primorska, FAMNIT, Koper, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Primorska, IAM, Koper, Slovenia
[4] Univ Leipzig, Bioinformat Grp, Dept Comp Sci, Leipzig, Germany
[5] Univ Leipzig, Interdisciplinary Ctr Bioinformat, Leipzig, Germany
[6] Max Planck Inst Math Sci, Leipzig, Germany
[7] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England
[8] Univ Leipzig, Inst Infrastruct & Resources Management, Leipzig, Germany
[9] Univ Vienna, Inst Theoret Chem, Vienna, Austria
[10] Univ Nacl Colombia, Fac Ciencias, Sede Bogota, Bogota, Colombia
[11] Santa Fe Inst, Santa Fe, NM 87501 USA
[12] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia
[13] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
关键词
Benzenoid; fusene; convexity deficit; convex benzenoid; quasi-convex benzenoid; pseudo-convex benzenoid; HYDROCARBONS; ENUMERATION; IDENTIFICATION; GENERATION; TOPOLOGY; FUSENES;
D O I
10.5562/cca3602
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In 2012, a family of benzenoids was introduced by Cruz, Gutman, and Rada, which they called convex benzenoids. In this paper we introduce the convexity deficit, a new topological index intended for benzenoids and, more generally, fusenes. This index measures by how much a given fusene departs from convexity. It is defined in terms of the boundary-edges code. In particular, convex benzenoids are exactly the benzenoids having convexity deficit equal to 0. Quasi-convex benzenoids form the family of non-convex benzenoids that are closest to convex, i.e., they have convexity deficit equal to 1. Finally, we investigate convexity deficit of several important families of benzenoids.
引用
收藏
页码:457 / 466
页数:10
相关论文
共 50 条
  • [1] Isoresonant benzenoids
    Zivkovic, TP
    Schmalz, TG
    Klein, DJ
    POLYCYCLIC AROMATIC COMPOUNDS, 2000, 18 (01) : 13 - 24
  • [2] ELEMENTAL BENZENOIDS
    KLEIN, DJ
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (02): : 453 - 459
  • [3] Kekuléan benzenoids
    Jack E. Graver
    Elizabeth J. Hartung
    Journal of Mathematical Chemistry, 2014, 52 : 977 - 989
  • [4] Kekul,an benzenoids
    Graver, Jack E.
    Hartung, Elizabeth J.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (03) : 977 - 989
  • [5] RESONANCE ENERGIES AND AROMATICITY OF SOME BENZENOIDS AND NON-BENZENOIDS
    SHARMA, SC
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1978, 259 (06): : 1031 - 1036
  • [6] Resonance in elemental benzenoids
    Texas A and M Univ. at Galveston, Galveston, TX 77553-1675, United States
    Discrete Appl Math, 1-3 (157-173):
  • [7] Resonance in elemental benzenoids
    Klein, DJ
    Zhu, H
    DISCRETE APPLIED MATHEMATICS, 1996, 67 (1-3) : 157 - 173
  • [8] Interface Theory of Benzenoids
    Langner, Johanna
    Witek, Henryk A.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 84 (01) : 143 - 176
  • [9] SETTING BENZENOIDS TO ORDER
    DIAS, JR
    CHEMISTRY IN BRITAIN, 1994, 30 (05) : 384 - 387
  • [10] Extremal catacondensed benzenoids
    Zhang, LZ
    Tian, F
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2003, 34 (1-2) : 111 - 122