Clar and Fries numbers for benzenoids

被引:0
|
作者
Jack E. Graver
Elizabeth J. Hartung
Ahmed Y. Souid
机构
[1] Syracuse University,
[2] Massachusetts College of Liberal Arts,undefined
来源
关键词
Benzenoids; Fullerenes; Conjugated 6-circuits; Fries structure; Clar structure; Kekulé structure;
D O I
暂无
中图分类号
学科分类号
摘要
A Kekulé structure of a benzenoid or a fullerene Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a set of edges K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} such that each vertex of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is incident with exactly one edge in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. The set of faces in Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} that have exactly three edges in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} are called the benzene faces of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. The Fries number of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is the maximum number of benzene faces over all possible Kekulé structures for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. The Clar number is the maximum number of independent benzene faces over all possible Kekulé structures for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. It is often assumed, but never proved, that some set of independent benzene faces giving the Clar number is a subset of a set of benzene faces giving the Fries number. In Hartung (The Clar structure of fullerenes, Ph.D. Dissertation. Syracuse University, 2012) it is shown that this assumption is false for a large class of fullerenes. In this paper, we prove that this assumption is valid for a large a class of benzenoids.
引用
收藏
页码:1981 / 1989
页数:8
相关论文
共 50 条
  • [21] BENZENOIDS WITH MAXIMUM KEKULE STRUCTURE COUNTS FOR GIVEN NUMBERS OF HEXAGONS
    BALABAN, AT
    LIU, XY
    CYVIN, SJ
    KLEIN, DJ
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1993, 33 (03): : 429 - 436
  • [22] THE FIBONACCI NUMBERS, AND KEKULE STRUCTURES OF SOME CORONA-CONDENSED BENZENOIDS (CORANNULENES)
    BERGAN, JL
    CYVIN, BN
    CYVIN, SJ
    ACTA CHIMICA HUNGARICA-MODELS IN CHEMISTRY, 1987, 124 (02): : 299 - 314
  • [23] A REMARK ON THE NAMING OF CATA-CONDENSED BENZENOIDS WITH BASE-5 NUMBERS
    MULLER, WR
    SZYMANSKI, K
    KNOP, JV
    TRINAJSTIC, N
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1995, 35 (04): : 759 - 760
  • [24] Proving some conjectures on Kekule numbers for certain benzenoids by using Chebyshev polynomials
    Xin, Guoce
    Zhong, Yueming
    ADVANCES IN APPLIED MATHEMATICS, 2023, 145
  • [25] On the ordering of benzenoid chains and cyclo-polyphenacenes with respect to their numbers of Clar aromatic sextets
    Lusheng Wang
    Fuji Zhang
    Hao Zhao
    Journal of Mathematical Chemistry, 2005, 38 : 293 - 309
  • [26] WHY CAN SO FEW BENZENOIDS BE COMPLETELY DRAWN WITH CLAR RESONANT SEXTETS - AN ANALYSIS USING BRANCHING GRAPHS AND A COILED-HEXAGON CODE
    KIRBY, EC
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1990, 86 (03): : 447 - 452
  • [27] On the ordering of benzenoid chains and cyclo-polyphenacenes with respect to their numbers of Clar aromatic sextets
    Wang, LS
    Zhang, FJ
    Zhao, H
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (02) : 293 - 309
  • [28] Isoresonant benzenoids
    Zivkovic, TP
    Schmalz, TG
    Klein, DJ
    POLYCYCLIC AROMATIC COMPOUNDS, 2000, 18 (01) : 13 - 24
  • [29] ELEMENTAL BENZENOIDS
    KLEIN, DJ
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (02): : 453 - 459
  • [30] Kekuléan benzenoids
    Jack E. Graver
    Elizabeth J. Hartung
    Journal of Mathematical Chemistry, 2014, 52 : 977 - 989