Modeling the transmission dynamics of varicella in Hungary

被引:0
|
作者
János Karsai
Rita Csuma-Kovács
Ágnes Dánielisz
Zsuzsanna Molnár
János Dudás
Teodóra Borsos
Gergely Röst
机构
[1] University of Szeged,Bolyai Institute
[2] National Public Health Center,undefined
关键词
Epidemic; Varicella; Zoster; Reproduction number; Underreporting; Seasonality; Parameter senitivity; Model fitting; Mathematica; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
Vaccines against varicella-zoster virus (VZV) are under introduction in Hungary into the routine vaccination schedule, hence it is important to understand the current transmission dynamics and to estimate the key parameters of the disease. Mathematical models can be greatly useful in advising public health policy decision making by comparing predictions for different scenarios. First we consider a simple compartmental model that includes key features of VZV such as latency and reactivation of the virus as zoster, and exogeneous boosting of immunity. After deriving the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}, the model is analysed mathematically and the threshold dynamics is proven: if R0≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}\leq 1$\end{document} then the virus will be eradicated, while if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}>1$\end{document} then an endemic equilibrium exists and the virus uniformly persists in the population. Then we extend the model to include seasonality, and fit it to monthly incidence data from Hungary. It is shown that besides the seasonality, the disease dynamics has intrinsic multi-annual periodicity. We also investigate the sensitivity of the model outputs to the system parameters and the underreporting ratio, and provide estimates for R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Dynamics Modeling of Transmission Gear Rattle and Factors Analysis
    Zhao, Ya-Nan
    Zhang, Hong-Hui
    PROCEEDINGS OF THE 3RD ANNUAL INTERNATIONAL CONFERENCE ON MECHANICS AND MECHANICAL ENGINEERING (MME 2016), 2017, 105 : 862 - 868
  • [42] Modeling distributed energy resource dynamics on the transmission system
    Guttromson, RT
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2002, 17 (04) : 1148 - 1153
  • [43] Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality
    Samuel Bowong
    Jurgen Kurths
    Nonlinear Dynamics, 2012, 67 : 2027 - 2051
  • [44] MODELING THE EFFECTS OF SCHISTOSOMIASIS ON THE TRANSMISSION DYNAMICS OF HIV/AIDS
    Bhunu, C. P.
    Tchuenche, J. M.
    Garira, W.
    Magombedze, G.
    Mushayabasa, S.
    JOURNAL OF BIOLOGICAL SYSTEMS, 2010, 18 (02) : 277 - 297
  • [45] MODELING THE EFFECTS OF CARRIERS ON TRANSMISSION DYNAMICS OF INFECTIOUS DISEASES
    Kalajdzievska, Darja
    Li, Michael Y.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2011, 8 (03) : 711 - 722
  • [46] Modeling and analyzing dynamics of malaria transmission with host immunity
    Cai, Li-Ming
    Li, Zhaoqing
    Liu, Jinliang
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2019, 12 (06)
  • [47] Modeling of the combined dynamics of leptospirosis transmission and seroconversion in herds
    Sudarat Chadsuthi
    Karine Chalvet-Monfray
    Angeli Kodjo
    Anuwat Wiratsudakul
    Dominique J. Bicout
    Scientific Reports, 12
  • [48] Modeling distributed energy resource dynamics on the transmission system
    Guttromson, RT
    2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, : 2146 - 2146
  • [49] Numerical Modeling of Internal Transmission Dynamics of Dengue Virus
    Rafiq, M.
    Ahmad, M. O.
    Iqbal, S.
    2016 13TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2016, : 85 - 91
  • [50] Modeling the Transmission Dynamics and Optimal Control Strategy for Huanglongbing
    Liu, Yujiang
    Gao, Shujing
    Chen, Di
    Liu, Bing
    MATHEMATICS, 2024, 12 (17)