Modeling the transmission dynamics of varicella in Hungary

被引:0
|
作者
János Karsai
Rita Csuma-Kovács
Ágnes Dánielisz
Zsuzsanna Molnár
János Dudás
Teodóra Borsos
Gergely Röst
机构
[1] University of Szeged,Bolyai Institute
[2] National Public Health Center,undefined
关键词
Epidemic; Varicella; Zoster; Reproduction number; Underreporting; Seasonality; Parameter senitivity; Model fitting; Mathematica; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
Vaccines against varicella-zoster virus (VZV) are under introduction in Hungary into the routine vaccination schedule, hence it is important to understand the current transmission dynamics and to estimate the key parameters of the disease. Mathematical models can be greatly useful in advising public health policy decision making by comparing predictions for different scenarios. First we consider a simple compartmental model that includes key features of VZV such as latency and reactivation of the virus as zoster, and exogeneous boosting of immunity. After deriving the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}, the model is analysed mathematically and the threshold dynamics is proven: if R0≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}\leq 1$\end{document} then the virus will be eradicated, while if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}>1$\end{document} then an endemic equilibrium exists and the virus uniformly persists in the population. Then we extend the model to include seasonality, and fit it to monthly incidence data from Hungary. It is shown that besides the seasonality, the disease dynamics has intrinsic multi-annual periodicity. We also investigate the sensitivity of the model outputs to the system parameters and the underreporting ratio, and provide estimates for R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Kinematics and Dynamics Modeling of the Planet Transmission System
    Jin Taotao
    Li Pingkang
    ISTM/2009: 8TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, 2009, : 2234 - 2237
  • [22] Modeling the Transmission Dynamics of Clonorchiasis in Foshan, China
    Yuan, Ruixia
    Huang, Jicai
    Zhang, Xinan
    Ruan, Shigui
    SCIENTIFIC REPORTS, 2018, 8
  • [23] Chancroid transmission dynamics: a mathematical modeling approach
    C. P. Bhunu
    S. Mushayabasa
    Theory in Biosciences, 2011, 130 : 289 - 298
  • [24] Mathematical Modeling of the Transmission Dynamics of Gumboro Disease
    Musaili, J. S.
    Chepkwony, I.
    Mutuku, W. N.
    JOURNAL OF APPLIED MATHEMATICS, 2024, 2024
  • [25] Modeling the Transmission Dynamics of Clonorchiasis in Foshan, China
    Ruixia Yuan
    Jicai Huang
    Xinan Zhang
    Shigui Ruan
    Scientific Reports, 8
  • [26] Numerical Modeling of Toxoplasmosis Disease Transmission Dynamics
    Rafiq, M.
    Arif, M. S.
    Raza, A.
    Khatoon, Zainab
    PROCEEDINGS OF 2018 15TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2018, : 188 - 193
  • [27] MODELING ZIKA TRANSMISSION DYNAMICS: PREVENTION AND CONTROL
    Roy, Parimita
    Upadhyay, Ranjit Kumar
    Caur, Jasmine
    JOURNAL OF BIOLOGICAL SYSTEMS, 2020, 28 (03) : 719 - 749
  • [28] Mathematical modeling and analysis of schistosomiasis transmission dynamics
    Mustapha, Umar T.
    Musa, Salihu S.
    Lawan, Muhammad A.
    Abba, Aliyu
    Hincal, Evren
    Mohammed, Musa D.
    Garba, Bashir D.
    Yunus, Rabiu B.
    Adamu, Shehu A.
    He, Daihai
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2021, 12 (04)
  • [29] MODELING AND ANALYZING THE TRANSMISSION DYNAMICS OF VISCERAL LEISHMANIASIS
    Zou, Lan
    Chen, Jing
    Ruan, Shigui
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2017, 14 (5-6) : 1585 - 1604
  • [30] Modeling the transmission dynamics and control of rabies in China
    Ruan, Shigui
    MATHEMATICAL BIOSCIENCES, 2017, 286 : 65 - 93