Modeling the transmission dynamics of varicella in Hungary

被引:0
|
作者
János Karsai
Rita Csuma-Kovács
Ágnes Dánielisz
Zsuzsanna Molnár
János Dudás
Teodóra Borsos
Gergely Röst
机构
[1] University of Szeged,Bolyai Institute
[2] National Public Health Center,undefined
关键词
Epidemic; Varicella; Zoster; Reproduction number; Underreporting; Seasonality; Parameter senitivity; Model fitting; Mathematica; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
Vaccines against varicella-zoster virus (VZV) are under introduction in Hungary into the routine vaccination schedule, hence it is important to understand the current transmission dynamics and to estimate the key parameters of the disease. Mathematical models can be greatly useful in advising public health policy decision making by comparing predictions for different scenarios. First we consider a simple compartmental model that includes key features of VZV such as latency and reactivation of the virus as zoster, and exogeneous boosting of immunity. After deriving the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}, the model is analysed mathematically and the threshold dynamics is proven: if R0≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}\leq 1$\end{document} then the virus will be eradicated, while if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}>1$\end{document} then an endemic equilibrium exists and the virus uniformly persists in the population. Then we extend the model to include seasonality, and fit it to monthly incidence data from Hungary. It is shown that besides the seasonality, the disease dynamics has intrinsic multi-annual periodicity. We also investigate the sensitivity of the model outputs to the system parameters and the underreporting ratio, and provide estimates for R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [11] Numerical Modeling of the transmission dynamics of influenza
    Chinviriyasit, Wirawan
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 52 - +
  • [12] Infectious disease modeling and the dynamics of transmission
    Real, L. A.
    Biek, R.
    WILDLIFE AND EMERGING ZOONOTIC DISEASES: THE BIOLOGY, CIRCUMSTANCES AND CONSEQUENCES OF CROSS-SPECIES TRANSMISSION, 2007, 315 : 33 - 49
  • [13] Modeling transmission dynamics of rabies in Nepal
    Pantha, Buddhi
    Giri, Sunil
    Joshi, Hem Raj
    Vaidya, Naveen K.
    INFECTIOUS DISEASE MODELLING, 2021, 6 : 284 - 301
  • [14] THE POTENTIAL PUBLIC HEALTH IMPACT OF VARICELLA VACCINATION IN HUNGARY
    Meszner, Z.
    Benedek, A.
    Kyle, J.
    Pillsbury, M.
    Wolfson, L. J.
    VALUE IN HEALTH, 2016, 19 (07) : A423 - A423
  • [15] Ecoepidemic modeling and dynamics of alveolar echinococcosis transmission
    Rong, Xinmiao
    Fan, Meng
    MATHEMATICAL BIOSCIENCES, 2024, 377
  • [16] Deterministic modeling of the transmission dynamics of intramammary infections
    Rachah, Amira
    Dalen, Gunnar
    Norstebo, Havard
    Reksen, Olav
    Barlow, John W.
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS, 2018, 1132
  • [17] Modeling and optimal control of the transmission dynamics of amebiasis
    Edward, Stephen
    Mpogolo, Godfrey Edward
    RESULTS IN CONTROL AND OPTIMIZATION, 2023, 13
  • [18] Chancroid transmission dynamics: a mathematical modeling approach
    Bhunu, C. P.
    Mushayabasa, S.
    THEORY IN BIOSCIENCES, 2011, 130 (04) : 289 - 298
  • [19] Modeling the dynamics of rubella disease with vertical transmission
    Tilahun, Getachew Teshome
    Tolasa, Tariku Merga
    Wole, Getinet Alemayehu
    HELIYON, 2022, 8 (11)
  • [20] Modeling transmission dynamics of Ebola virus disease
    Imran, Mudassar
    Khan, Adnan
    Ansari, Ali R.
    Shah, Syed Touqeer Hussain
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (04)