Modeling the transmission dynamics of varicella in Hungary

被引:0
|
作者
János Karsai
Rita Csuma-Kovács
Ágnes Dánielisz
Zsuzsanna Molnár
János Dudás
Teodóra Borsos
Gergely Röst
机构
[1] University of Szeged,Bolyai Institute
[2] National Public Health Center,undefined
关键词
Epidemic; Varicella; Zoster; Reproduction number; Underreporting; Seasonality; Parameter senitivity; Model fitting; Mathematica; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
Vaccines against varicella-zoster virus (VZV) are under introduction in Hungary into the routine vaccination schedule, hence it is important to understand the current transmission dynamics and to estimate the key parameters of the disease. Mathematical models can be greatly useful in advising public health policy decision making by comparing predictions for different scenarios. First we consider a simple compartmental model that includes key features of VZV such as latency and reactivation of the virus as zoster, and exogeneous boosting of immunity. After deriving the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}, the model is analysed mathematically and the threshold dynamics is proven: if R0≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}\leq 1$\end{document} then the virus will be eradicated, while if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}>1$\end{document} then an endemic equilibrium exists and the virus uniformly persists in the population. Then we extend the model to include seasonality, and fit it to monthly incidence data from Hungary. It is shown that besides the seasonality, the disease dynamics has intrinsic multi-annual periodicity. We also investigate the sensitivity of the model outputs to the system parameters and the underreporting ratio, and provide estimates for R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Transmission of Varicella Vaccine Virus, Japan
    Otsuka, Taketo
    Gomi, Yasuyuki
    Inoue, Naoki
    Uchiyama, Makoto
    EMERGING INFECTIOUS DISEASES, 2009, 15 (10) : 1702 - 1703
  • [32] Directly transmitted viral diseases: modeling the dynamics of transmission
    Lavine, Jennie S.
    Poss, Mary
    Grenfell, Bryan T.
    TRENDS IN MICROBIOLOGY, 2008, 16 (04) : 165 - 172
  • [33] Modeling of rotavirus transmission dynamics and impact of vaccination in Ghana
    Asare, Ernest O.
    Al-Mamun, Mohammad A.
    Armah, George E.
    Lopman, Benjamin A.
    Parashar, Umesh D.
    Binka, Fred
    Pitzer, Virginia E.
    VACCINE, 2020, 38 (31) : 4820 - 4828
  • [34] The chikungunya disease: Modeling, vector and transmission global dynamics
    Moulay, D.
    Aziz-Alaoui, M. A.
    Cadivel, M.
    MATHEMATICAL BIOSCIENCES, 2011, 229 (01) : 50 - 63
  • [35] Modeling the transmission dynamics of Ebola virus disease in Liberia
    Zhi-Qiang Xia
    Shi-Fu Wang
    Shen-Long Li
    Liu-Yu Huang
    Wen-Yi Zhang
    Gui-Quan Sun
    Zhong-Tao Gai
    Zhen Jin
    Scientific Reports, 5
  • [36] Mathematical Modeling and Analyzing of Transmission Dynamics of Influenza with Carrier
    Paul, S. C.
    Haque, M. A.
    Islam, M. A.
    Chakraborty, A. K.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (04): : 26 - 40
  • [37] Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality
    Bowong, Samuel
    Kurths, Jurgen
    NONLINEAR DYNAMICS, 2012, 67 (03) : 2027 - 2051
  • [38] Modeling of the combined dynamics of leptospirosis transmission and seroconversion in herds
    Chadsuthi, Sudarat
    Chalvet-Monfray, Karine
    Kodjo, Angeli
    Wiratsudakul, Anuwat
    Bicout, Dominique J.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [39] Transmission dynamics of cholera: Mathematical modeling and control strategies
    Sun, Gui-Quan
    Xie, Jun -Hui
    Huang, Sheng-He
    Jin, Zhen
    Li, Ming-Tao
    Liu, Liqun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 45 : 235 - 244
  • [40] MODELING THE DYNAMICS AND TRANSMISSION OF CASSAVA MOSAIC DISEASE IN TANZANIA
    Magoyo, Florence
    Irunde, Jacob Ismail
    Kuznetsov, Dmitry
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2019,