Modeling the transmission dynamics of varicella in Hungary

被引:0
|
作者
János Karsai
Rita Csuma-Kovács
Ágnes Dánielisz
Zsuzsanna Molnár
János Dudás
Teodóra Borsos
Gergely Röst
机构
[1] University of Szeged,Bolyai Institute
[2] National Public Health Center,undefined
关键词
Epidemic; Varicella; Zoster; Reproduction number; Underreporting; Seasonality; Parameter senitivity; Model fitting; Mathematica; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
Vaccines against varicella-zoster virus (VZV) are under introduction in Hungary into the routine vaccination schedule, hence it is important to understand the current transmission dynamics and to estimate the key parameters of the disease. Mathematical models can be greatly useful in advising public health policy decision making by comparing predictions for different scenarios. First we consider a simple compartmental model that includes key features of VZV such as latency and reactivation of the virus as zoster, and exogeneous boosting of immunity. After deriving the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}, the model is analysed mathematically and the threshold dynamics is proven: if R0≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}\leq 1$\end{document} then the virus will be eradicated, while if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}>1$\end{document} then an endemic equilibrium exists and the virus uniformly persists in the population. Then we extend the model to include seasonality, and fit it to monthly incidence data from Hungary. It is shown that besides the seasonality, the disease dynamics has intrinsic multi-annual periodicity. We also investigate the sensitivity of the model outputs to the system parameters and the underreporting ratio, and provide estimates for R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Modeling the transmission dynamics of varicella in Hungary
    Karsai, Janos
    Csuma-Kovacs, Rita
    Danielisz, Agnes
    Molnar, Zsuzsanna
    Dudas, Janos
    Borsos, Teodora
    Rost, Gergely
    JOURNAL OF MATHEMATICS IN INDUSTRY, 2020, 10 (01)
  • [2] Varicella susceptibility and transmission dynamics in Slovenia
    Socan, Maja
    Berginc, Natasa
    Lajovic, Jaro
    BMC PUBLIC HEALTH, 2010, 10
  • [3] Varicella susceptibility and transmission dynamics in Slovenia
    Maja Sočan
    Nataša Berginc
    Jaro Lajovic
    BMC Public Health, 10
  • [4] The seroepidemiology and transmission dynamics of varicella in Australia
    Gidding, HF
    MacIntyre, CR
    Burgess, MA
    Gilbert, GL
    EPIDEMIOLOGY AND INFECTION, 2003, 131 (03): : 1085 - 1089
  • [5] Varicella zoster virus transmission dynamics in Vojvodina, Serbia
    Medic, Snezana
    Katsilieris, Michalis
    Lozanov-Crvenkovic, Zagorka
    Siettos, Constantinos I.
    Petrovic, Vladimir
    Milosevic, Vesna
    Brkic, Snezana
    Andrews, Nick
    Ubavic, Milan
    Anastassopoulou, Cleo
    PLOS ONE, 2018, 13 (03):
  • [6] Reconstructing the transmission dynamics of varicella in Japan: an elevation of age at infection
    Suzuki, Ayako
    Nishiura, Hiroshi
    PEERJ, 2022, 10
  • [7] Challenges in the Modelling and Control of Varicella in Hungary
    Csuma-Kovacs, Rita
    Dudas, Janos
    Karsai, Janos
    Danielisz, Agnes
    Molnar, Zsuzsanna
    Rost, Gergely
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2018, 2019, 30 : 249 - 255
  • [8] Modeling the impact of changes in day-care contact patterns on the dynamics of varicella transmission in France between 1991 and 2015
    Marziano, Valentina
    Poletti, Piero
    Bearaud, Guillaume
    Boelle, Pierre-Yves
    Merler, Stefano
    Colizza, Vittoria
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (08)
  • [9] Seasonal transmission dynamics of varicella in Japan: The role of temperature and school holidays
    Suzuki, Ayako
    Nishiura, Hiroshi
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (02) : 4069 - 4081
  • [10] Modeling the Transmission Dynamics of Bovine Tuberculosis
    Shirima Sabini, Theresia
    Ismail Irunde, Jacob
    Kuznetsov, Dmitry
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2020, 2020