Interplay between symmetries of quantum 6j-symbols and the eigenvalue hypothesis

被引:0
|
作者
Victor Alekseev
Andrey Morozov
Alexey Sleptsov
机构
[1] ITEP,
[2] Institute for Information Transmission Problems,undefined
[3] Moscow Institute of Physics and Technology,undefined
来源
关键词
Racah-Wigner 6j-symbols; Quantum groups; Yang-Baxter equation; Symmetries; 57K16; 17B37; 16T25; 18M15; 81T13;
D O I
暂无
中图分类号
学科分类号
摘要
The eigenvalue hypothesis claims that any quantum Racah matrix for finite-dimensional representations of Uq(slN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_N)$$\end{document} is uniquely determined by eigenvalues of the corresponding quantum R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}$$\end{document}-matrices. If this hypothesis turns out to be true, then it will significantly simplify the computation of Racah matrices. Also, due to this hypothesis various interesting properties of colored HOMFLY-PT polynomials will be proved. In addition, it allows one to discover new symmetries of the quantum 6j-symbols, about which almost nothing is known for N>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2$$\end{document}, with the exception of the tetrahedral symmetries, complex conjugation and transformation q⟷q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \longleftrightarrow q^{-1}$$\end{document}. In this paper, we prove the eigenvalue hypothesis in Uq(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_2)$$\end{document} case and show that it is equivalent to 6j-symbol symmetries (the Regge symmetry and two argument permutations). Then, we apply the eigenvalue hypothesis to inclusive Racah matrices with 3 symmetric incoming representations of Uq(slN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_N)$$\end{document} and an arbitrary outcoming one. It gives us 8 new additional symmetries that are not tetrahedral ones. Finally, we apply the eigenvalue hypothesis to exclusive Racah matrices with symmetric representations and obtain 4 tetrahedral symmetries.
引用
收藏
相关论文
共 50 条
  • [21] A parafermionic hypergeometric function and supersymmetric 6j-symbols
    Apresyan, Elena
    Sarkissian, Gor
    Spiridonov, Vyacheslav P.
    NUCLEAR PHYSICS B, 2023, 990
  • [22] The 6j-Symbols for the SL(2, C) Group
    Derkachov, S. E.
    Spiridonov, V. P.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 198 (01) : 29 - 47
  • [23] 6j-symbols, hyperbolic structures and the volume conjecture
    Costantino, Francesco
    GEOMETRY & TOPOLOGY, 2007, 11 : 1831 - 1854
  • [24] Ring-Shaped Functions and Wigner 6j-Symbols
    L. G. Mardoyan
    Theoretical and Mathematical Physics, 2006, 146 : 248 - 258
  • [25] Modified 6j-symbols and 3-manifold invariants
    Geer, Nathan
    Patureau-Mirand, Bertrand
    Turaev, Vladimir
    ADVANCES IN MATHEMATICS, 2011, 228 (02) : 1163 - 1202
  • [26] Ring-shaped functions and Wigner 6j-symbols
    Mardoyan, LG
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 146 (02) : 248 - 258
  • [27] The vertex-face correspondence and the elliptic 6j-symbols
    Konno, H
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 72 (03) : 243 - 258
  • [28] The Vertex-Face Correspondence and the Elliptic 6j-Symbols
    Hitoshi Konno
    Letters in Mathematical Physics, 2005, 72 : 243 - 258
  • [29] SYMMETRY PROPERTIES OF S-CLASSIFIED SU(3) 3J-SYMBOLS, 6J-SYMBOLS AND 9J-SYMBOLS
    PLUHAR, Z
    WEIGERT, LJ
    HOLAN, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (01): : 29 - 34
  • [30] On 6j-symbols for symmetric representations of U q (su N )
    Mironov, A.
    Morozov, A.
    Sleptsov, A.
    JETP LETTERS, 2017, 106 (10) : 630 - 636