Interplay between symmetries of quantum 6j-symbols and the eigenvalue hypothesis

被引:0
|
作者
Victor Alekseev
Andrey Morozov
Alexey Sleptsov
机构
[1] ITEP,
[2] Institute for Information Transmission Problems,undefined
[3] Moscow Institute of Physics and Technology,undefined
来源
关键词
Racah-Wigner 6j-symbols; Quantum groups; Yang-Baxter equation; Symmetries; 57K16; 17B37; 16T25; 18M15; 81T13;
D O I
暂无
中图分类号
学科分类号
摘要
The eigenvalue hypothesis claims that any quantum Racah matrix for finite-dimensional representations of Uq(slN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_N)$$\end{document} is uniquely determined by eigenvalues of the corresponding quantum R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}$$\end{document}-matrices. If this hypothesis turns out to be true, then it will significantly simplify the computation of Racah matrices. Also, due to this hypothesis various interesting properties of colored HOMFLY-PT polynomials will be proved. In addition, it allows one to discover new symmetries of the quantum 6j-symbols, about which almost nothing is known for N>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2$$\end{document}, with the exception of the tetrahedral symmetries, complex conjugation and transformation q⟷q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \longleftrightarrow q^{-1}$$\end{document}. In this paper, we prove the eigenvalue hypothesis in Uq(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_2)$$\end{document} case and show that it is equivalent to 6j-symbol symmetries (the Regge symmetry and two argument permutations). Then, we apply the eigenvalue hypothesis to inclusive Racah matrices with 3 symmetric incoming representations of Uq(slN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_N)$$\end{document} and an arbitrary outcoming one. It gives us 8 new additional symmetries that are not tetrahedral ones. Finally, we apply the eigenvalue hypothesis to exclusive Racah matrices with symmetric representations and obtain 4 tetrahedral symmetries.
引用
收藏
相关论文
共 50 条
  • [31] Orthogonal Polynomials, 6J-Symbols, and Statistical Weights of SOS Models
    Valinevich P.A.
    Derkachov S.E.
    Isaev A.P.
    Komisarchuk A.V.
    Journal of Mathematical Sciences, 2019, 238 (6) : 834 - 853
  • [32] New Symmetries for the Uq(slN) 6-j Symbols from the Eigenvalue Conjecture1
    Morozov, A.
    Sleptsov, A.
    JETP LETTERS, 2018, 108 (10) : 697 - 704
  • [33] New Symmetries for the Uq(slN) 6-j Symbols from the Eigenvalue Conjecture1
    A. Morozov
    A. Sleptsov
    JETP Letters, 2018, 108 : 697 - 704
  • [34] ELLIPTIC HYPERGEOMETRIC FUNCTION AND 6j-SYMBOLS FOR THE SL(2, C) GROUP
    Derkachov, S. E.
    Sarkissian, G. A.
    Spiridonov, V. P.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 213 (01) : 1406 - 1422
  • [35] STATE SUM INVARIANTS OF COMPACT 3-MANIFOLDS WITH BOUNDARY AND 6J-SYMBOLS
    KAROWSKI, M
    MULLER, W
    SCHRADER, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (18): : 4847 - 4860
  • [36] CLASSICAL 6j-SYMBOLS OF FINITE-DIMENSIONAL REPRESENTATIONS OF THE ALGEBRA gl3
    Artamonov, D. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 216 (01) : 909 - 923
  • [37] Relaxation of rotational states at collisions. Evaluation of some sums involving 3j- and 6j-symbols
    Strekalov, ML
    CHEMICAL PHYSICS LETTERS, 1996, 256 (1-2) : 149 - 152
  • [38] ASYMPTOTICS OF QUANTUM 6j SYMBOLS
    Chen, Qingtao
    Murakami, Jun
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2023, 123 (01) : 1 - 20
  • [39] REGGE SYMMETRIES OF SUPER 6-J SYMBOLS FOR THE SUPERALGEBRA OSP(1/2)
    DAUMENS, M
    MINNAERT, P
    MOZRZYMAS, M
    TOSHEV, S
    EUROPHYSICS LETTERS, 1992, 20 (08): : 671 - 676
  • [40] Interplay between Spacetime Curvature, Speed of Light and Quantum Deformations of Relativistic Symmetries
    Ballesteros, Angel
    Gubitosi, Giulia
    Mercati, Flavio
    SYMMETRY-BASEL, 2021, 13 (11):