Interplay between symmetries of quantum 6j-symbols and the eigenvalue hypothesis

被引:0
|
作者
Victor Alekseev
Andrey Morozov
Alexey Sleptsov
机构
[1] ITEP,
[2] Institute for Information Transmission Problems,undefined
[3] Moscow Institute of Physics and Technology,undefined
来源
关键词
Racah-Wigner 6j-symbols; Quantum groups; Yang-Baxter equation; Symmetries; 57K16; 17B37; 16T25; 18M15; 81T13;
D O I
暂无
中图分类号
学科分类号
摘要
The eigenvalue hypothesis claims that any quantum Racah matrix for finite-dimensional representations of Uq(slN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_N)$$\end{document} is uniquely determined by eigenvalues of the corresponding quantum R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}$$\end{document}-matrices. If this hypothesis turns out to be true, then it will significantly simplify the computation of Racah matrices. Also, due to this hypothesis various interesting properties of colored HOMFLY-PT polynomials will be proved. In addition, it allows one to discover new symmetries of the quantum 6j-symbols, about which almost nothing is known for N>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2$$\end{document}, with the exception of the tetrahedral symmetries, complex conjugation and transformation q⟷q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \longleftrightarrow q^{-1}$$\end{document}. In this paper, we prove the eigenvalue hypothesis in Uq(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_2)$$\end{document} case and show that it is equivalent to 6j-symbol symmetries (the Regge symmetry and two argument permutations). Then, we apply the eigenvalue hypothesis to inclusive Racah matrices with 3 symmetric incoming representations of Uq(slN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_N)$$\end{document} and an arbitrary outcoming one. It gives us 8 new additional symmetries that are not tetrahedral ones. Finally, we apply the eigenvalue hypothesis to exclusive Racah matrices with symmetric representations and obtain 4 tetrahedral symmetries.
引用
收藏
相关论文
共 50 条
  • [41] Kondo effect in triple quantum dots: interplay between continuous and discrete symmetries
    Kikoin, K
    Kuzmenko, T
    Avishai, Y
    PHYSICA B-CONDENSED MATTER, 2006, 378-80 : 906 - 907
  • [42] Multiplicity-free Uq(slN) 6-j symbols: Relations, asymptotics, symmetries
    Alekseev, Victor
    Morozov, Andrey
    Sleptsov, Alexey
    NUCLEAR PHYSICS B, 2020, 960
  • [43] SOME SPECIAL RELATIONS BETWEEN 6-J AND 9-J SYMBOLS
    VANDENBERGHE, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (02): : L29 - L32
  • [44] Enhanced quantum hypothesis testing via the interplay between coherent evolution and noises
    Li, Qing
    Wang, Lingna
    Jiang, Min
    Wu, Ze
    Yuan, Haidong
    Peng, Xinhua
    COMMUNICATIONS PHYSICS, 2025, 8 (01):
  • [45] INTERPLAY BETWEEN ISING AND 6-VERTEX SYMMETRIES IN A MODEL FOR THE ROUGHENING OF RECONSTRUCTING SURFACES
    KOHANOFF, J
    JUG, G
    TOSATTI, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (23): : 5625 - 5646
  • [46] Racah-Wigner quantum 6J symbols, Ocneanu cells for AN diagrams and quantum groupoids
    Coquereaux, R.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 387 - 434
  • [47] 3-DIMENSIONAL REGGE QUANTUM-GRAVITY AND 6J SYMBOLS
    LEWIS, SM
    PHYSICS LETTERS B, 1983, 122 (3-4) : 265 - 267
  • [48] On the SL (2, C) quantum 6j - symbols and their relation to the hyperbolic volume
    Costantinoand, Francesco
    Murakami, Jun
    QUANTUM TOPOLOGY, 2013, 4 (03) : 303 - 351
  • [49] 6j Symbols for the Modular Double, Quantum Hyperbolic Geometry, and Supersymmetric Gauge Theories
    Teschner, Joerg
    Vartanov, Grigory
    LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (05) : 527 - 551
  • [50] 6j Symbols for the Modular Double, Quantum Hyperbolic Geometry, and Supersymmetric Gauge Theories
    Jörg Teschner
    Grigory Vartanov
    Letters in Mathematical Physics, 2014, 104 : 527 - 551