On 6j-symbols for symmetric representations of U q (su N )

被引:8
|
作者
Mironov, A. [1 ,2 ,3 ,4 ]
Morozov, A. [2 ,3 ,4 ]
Sleptsov, A. [2 ,3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia
[2] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia
[4] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Moscow 115409, Russia
[5] Chelyabinsk State Univ, Lab Quantum Topol, Chelyabinsk 454001, Russia
基金
俄罗斯科学基金会;
关键词
RACAH MATRICES; ORTHOGONAL POLYNOMIALS; CONFORMAL BLOCKS; KNOT POLYNOMIALS; COEFFICIENTS; EVOLUTION; INTEGRABILITY; EXPANSION; ALGEBRA;
D O I
10.1134/S0021364017220040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Explicit expressions are found for the 6j symbols in symmetric representations of quantum su (N) through appropriate hypergeometric Askey-Wilson (q-Racah) polynomials. This generalizes the well-known classical formulas for U (q) (su(2)) and provides a link to conformal theories and matrix models.
引用
收藏
页码:630 / 636
页数:7
相关论文
共 50 条
  • [1] On 6j-symbols for symmetric representations of Uq(suN)
    A. Mironov
    A. Morozov
    A. Sleptsov
    JETP Letters, 2017, 106 : 630 - 636
  • [2] On Knots, Complements, and 6j-Symbols
    Hao Ellery Wang
    Yuanzhe Jack Yang
    Hao Derrick Zhang
    Satoshi Nawata
    Annales Henri Poincaré, 2021, 22 : 2691 - 2720
  • [3] SYMMETRY PROPERTIES OF S-CLASSIFIED SU(3) 3J-SYMBOLS, 6J-SYMBOLS AND 9J-SYMBOLS
    PLUHAR, Z
    WEIGERT, LJ
    HOLAN, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (01): : 29 - 34
  • [4] On Knots, Complements, and 6j-Symbols
    Wang, Hao Ellery
    Yang, Yuanzhe Jack
    Zhang, Hao Derrick
    Nawata, Satoshi
    ANNALES HENRI POINCARE, 2021, 22 (08): : 2691 - 2720
  • [5] Classical 6j-symbols and the tetrahedron
    Roberts, Justin
    GEOMETRY & TOPOLOGY, 1999, 3 : 21 - 66
  • [6] 6j-symbols and discrete quantum gravity
    Williams, RM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 88 : 124 - 131
  • [7] 6 j-symbols for symmetric representations of SO(n) as the double series
    Alisauskas, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (48): : 10229 - 10246
  • [8] Polynomial 6j-symbols and states sums
    Geer, Nathan
    Patureau-Mirand, Bertrand
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (03): : 1821 - 1860
  • [9] Subrepresentation semirings and an analog of 6j-symbols
    Kwon, Namhee
    Sage, Daniel S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
  • [10] The 6j-Symbols for the SL(2, ℂ) Group
    S. E. Derkachov
    V. P. Spiridonov
    Theoretical and Mathematical Physics, 2019, 198 : 29 - 47