On 6j-symbols for symmetric representations of U q (su N )

被引:8
|
作者
Mironov, A. [1 ,2 ,3 ,4 ]
Morozov, A. [2 ,3 ,4 ]
Sleptsov, A. [2 ,3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia
[2] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia
[4] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Moscow 115409, Russia
[5] Chelyabinsk State Univ, Lab Quantum Topol, Chelyabinsk 454001, Russia
基金
俄罗斯科学基金会;
关键词
RACAH MATRICES; ORTHOGONAL POLYNOMIALS; CONFORMAL BLOCKS; KNOT POLYNOMIALS; COEFFICIENTS; EVOLUTION; INTEGRABILITY; EXPANSION; ALGEBRA;
D O I
10.1134/S0021364017220040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Explicit expressions are found for the 6j symbols in symmetric representations of quantum su (N) through appropriate hypergeometric Askey-Wilson (q-Racah) polynomials. This generalizes the well-known classical formulas for U (q) (su(2)) and provides a link to conformal theories and matrix models.
引用
收藏
页码:630 / 636
页数:7
相关论文
共 50 条