On 6j-symbols for symmetric representations of U q (su N )

被引:8
|
作者
Mironov, A. [1 ,2 ,3 ,4 ]
Morozov, A. [2 ,3 ,4 ]
Sleptsov, A. [2 ,3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia
[2] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia
[4] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Moscow 115409, Russia
[5] Chelyabinsk State Univ, Lab Quantum Topol, Chelyabinsk 454001, Russia
基金
俄罗斯科学基金会;
关键词
RACAH MATRICES; ORTHOGONAL POLYNOMIALS; CONFORMAL BLOCKS; KNOT POLYNOMIALS; COEFFICIENTS; EVOLUTION; INTEGRABILITY; EXPANSION; ALGEBRA;
D O I
10.1134/S0021364017220040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Explicit expressions are found for the 6j symbols in symmetric representations of quantum su (N) through appropriate hypergeometric Askey-Wilson (q-Racah) polynomials. This generalizes the well-known classical formulas for U (q) (su(2)) and provides a link to conformal theories and matrix models.
引用
收藏
页码:630 / 636
页数:7
相关论文
共 50 条
  • [21] Quantum Teichmuller spaces and Kashaev's 6j-symbols
    Bai, Hua
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 1541 - 1560
  • [22] Modified 6j-symbols and 3-manifold invariants
    Geer, Nathan
    Patureau-Mirand, Bertrand
    Turaev, Vladimir
    ADVANCES IN MATHEMATICS, 2011, 228 (02) : 1163 - 1202
  • [23] Ring-shaped functions and Wigner 6j-symbols
    Mardoyan, LG
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 146 (02) : 248 - 258
  • [24] The vertex-face correspondence and the elliptic 6j-symbols
    Konno, H
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 72 (03) : 243 - 258
  • [25] The Vertex-Face Correspondence and the Elliptic 6j-Symbols
    Hitoshi Konno
    Letters in Mathematical Physics, 2005, 72 : 243 - 258
  • [26] GROWTH OF QUANTUM 6j-SYMBOLS AND APPLICATIONS TO THE VOLUME CONJECTURE
    Belletti, Giulio
    Detcherry, Renaud
    Kalfagianni, Efstratia
    Yang, Tian
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 120 (02) : 199 - 229
  • [27] EIGENVALUES OF CASIMIR OPERATORS OF U(N) AND SU(N) FOR TOTALLY SYMMETRIC AND ANTISYMMETRIC REPRESENTATIONS
    KOBAYASHI, K
    PROGRESS OF THEORETICAL PHYSICS, 1973, 49 (01): : 345 - 347
  • [28] Orthogonal Polynomials, 6J-Symbols, and Statistical Weights of SOS Models
    Valinevich P.A.
    Derkachov S.E.
    Isaev A.P.
    Komisarchuk A.V.
    Journal of Mathematical Sciences, 2019, 238 (6) : 834 - 853
  • [29] Quantum coadjoint action and the 6j-symbols of Uqsl2
    Baseilhac, Stephane
    INTERACTIONS BETWEEN HYPERBOLIC GEOMETRY, QUANTUM TOPOLOGY AND NUMBER THEORY, 2011, 541 : 103 - 143
  • [30] Interplay between symmetries of quantum 6j-symbols and the eigenvalue hypothesis
    Victor Alekseev
    Andrey Morozov
    Alexey Sleptsov
    Letters in Mathematical Physics, 2021, 111