Interplay between symmetries of quantum 6j-symbols and the eigenvalue hypothesis

被引:0
|
作者
Victor Alekseev
Andrey Morozov
Alexey Sleptsov
机构
[1] ITEP,
[2] Institute for Information Transmission Problems,undefined
[3] Moscow Institute of Physics and Technology,undefined
来源
关键词
Racah-Wigner 6j-symbols; Quantum groups; Yang-Baxter equation; Symmetries; 57K16; 17B37; 16T25; 18M15; 81T13;
D O I
暂无
中图分类号
学科分类号
摘要
The eigenvalue hypothesis claims that any quantum Racah matrix for finite-dimensional representations of Uq(slN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_N)$$\end{document} is uniquely determined by eigenvalues of the corresponding quantum R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}$$\end{document}-matrices. If this hypothesis turns out to be true, then it will significantly simplify the computation of Racah matrices. Also, due to this hypothesis various interesting properties of colored HOMFLY-PT polynomials will be proved. In addition, it allows one to discover new symmetries of the quantum 6j-symbols, about which almost nothing is known for N>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2$$\end{document}, with the exception of the tetrahedral symmetries, complex conjugation and transformation q⟷q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \longleftrightarrow q^{-1}$$\end{document}. In this paper, we prove the eigenvalue hypothesis in Uq(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_2)$$\end{document} case and show that it is equivalent to 6j-symbol symmetries (the Regge symmetry and two argument permutations). Then, we apply the eigenvalue hypothesis to inclusive Racah matrices with 3 symmetric incoming representations of Uq(slN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_N)$$\end{document} and an arbitrary outcoming one. It gives us 8 new additional symmetries that are not tetrahedral ones. Finally, we apply the eigenvalue hypothesis to exclusive Racah matrices with symmetric representations and obtain 4 tetrahedral symmetries.
引用
收藏
相关论文
共 50 条
  • [1] Interplay between symmetries of quantum 6j-symbols and the eigenvalue hypothesis
    Alekseev, Victor
    Morozov, Andrey
    Sleptsov, Alexey
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [2] 6j-symbols and discrete quantum gravity
    Williams, RM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 88 : 124 - 131
  • [3] Multiplicity-free Quantum 6j-Symbols for
    Nawata, Satoshi
    Pichai, Ramadevi
    Zodinmawia
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (12) : 1389 - 1398
  • [4] Tug-the-hook symmetry for quantum 6j-symbols
    Lanina, E.
    Sleptsova, A.
    PHYSICS LETTERS B, 2023, 845
  • [5] Quantum Teichmuller spaces and Kashaev's 6j-symbols
    Bai, Hua
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 1541 - 1560
  • [6] GROWTH OF QUANTUM 6j-SYMBOLS AND APPLICATIONS TO THE VOLUME CONJECTURE
    Belletti, Giulio
    Detcherry, Renaud
    Kalfagianni, Efstratia
    Yang, Tian
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 120 (02) : 199 - 229
  • [7] On Knots, Complements, and 6j-Symbols
    Hao Ellery Wang
    Yuanzhe Jack Yang
    Hao Derrick Zhang
    Satoshi Nawata
    Annales Henri Poincaré, 2021, 22 : 2691 - 2720
  • [8] On Knots, Complements, and 6j-Symbols
    Wang, Hao Ellery
    Yang, Yuanzhe Jack
    Zhang, Hao Derrick
    Nawata, Satoshi
    ANNALES HENRI POINCARE, 2021, 22 (08): : 2691 - 2720
  • [9] Classical 6j-symbols and the tetrahedron
    Roberts, Justin
    GEOMETRY & TOPOLOGY, 1999, 3 : 21 - 66
  • [10] Quantum coadjoint action and the 6j-symbols of Uqsl2
    Baseilhac, Stephane
    INTERACTIONS BETWEEN HYPERBOLIC GEOMETRY, QUANTUM TOPOLOGY AND NUMBER THEORY, 2011, 541 : 103 - 143