On 6j-symbols for symmetric representations of U q (su N )

被引:8
|
作者
Mironov, A. [1 ,2 ,3 ,4 ]
Morozov, A. [2 ,3 ,4 ]
Sleptsov, A. [2 ,3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia
[2] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia
[4] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Moscow 115409, Russia
[5] Chelyabinsk State Univ, Lab Quantum Topol, Chelyabinsk 454001, Russia
基金
俄罗斯科学基金会;
关键词
RACAH MATRICES; ORTHOGONAL POLYNOMIALS; CONFORMAL BLOCKS; KNOT POLYNOMIALS; COEFFICIENTS; EVOLUTION; INTEGRABILITY; EXPANSION; ALGEBRA;
D O I
10.1134/S0021364017220040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Explicit expressions are found for the 6j symbols in symmetric representations of quantum su (N) through appropriate hypergeometric Askey-Wilson (q-Racah) polynomials. This generalizes the well-known classical formulas for U (q) (su(2)) and provides a link to conformal theories and matrix models.
引用
收藏
页码:630 / 636
页数:7
相关论文
共 50 条
  • [31] Interplay between symmetries of quantum 6j-symbols and the eigenvalue hypothesis
    Alekseev, Victor
    Morozov, Andrey
    Sleptsov, Alexey
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [32] SYMMETRICAL IRREDUCIBLE REPRESENTATIONS OF SU(3)Q IN THE SU(2)Q X U(1) BASIS AND SOME EXTENSIONS TO SU(N)Q-SUPERSET-OF-SU(N-1)Q X U(1)
    PAN, F
    CHEN, JQ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (14): : 4017 - 4024
  • [33] Wigner 6j symbols for SU(N): Symbols with at least two quark-lines
    Alcock-Zeilinger, Judith
    Keppeler, Stefan
    Plaetzer, Simon
    Sjodahl, Malin
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (02)
  • [34] An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic)
    Hjalmar Rosengren
    The Ramanujan Journal, 2007, 13 : 131 - 166
  • [35] An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic)
    Rosengren, Hjalmar
    RAMANUJAN JOURNAL, 2007, 13 (1-3): : 131 - 166
  • [36] ELLIPTIC HYPERGEOMETRIC FUNCTION AND 6j-SYMBOLS FOR THE SL(2, C) GROUP
    Derkachov, S. E.
    Sarkissian, G. A.
    Spiridonov, V. P.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 213 (01) : 1406 - 1422
  • [37] TOPOLOGICAL QUANTUM-FIELD THEORIES FROM GENERALIZED 6J-SYMBOLS
    DURHUUS, B
    JAKOBSEN, HP
    NEST, R
    REVIEWS IN MATHEMATICAL PHYSICS, 1993, 5 (01) : 1 - 67
  • [38] STATE SUM INVARIANTS OF 3-MANIFOLDS AND QUANTUM 6J-SYMBOLS
    TURAEV, VG
    VIRO, OY
    TOPOLOGY, 1992, 31 (04) : 865 - 902
  • [39] STATE SUM INVARIANTS OF COMPACT 3-MANIFOLDS WITH BOUNDARY AND 6J-SYMBOLS
    KAROWSKI, M
    MULLER, W
    SCHRADER, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (18): : 4847 - 4860
  • [40] THE U(Q)SL(3) 6-J SYMBOLS AND STATE SUM MODEL
    ARCHER, FJ
    PHYSICS LETTERS B, 1992, 295 (3-4) : 199 - 208