Duhamel convolution product in the setting of quantum calculus

被引:0
|
作者
F. Bouzeffour
M. T. Garayev
机构
[1] King Saud University,Department of Mathematics, College of Sciences
来源
The Ramanujan Journal | 2018年 / 46卷
关键词
Duhamel product; -Difference operator; -Integral ; -special functions; -Duhamel product; Primary 33D45; Secondary 96J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the notions of the q-Duhamel product and q-integration operator. We prove that the classical Wiener algebra W+(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_+(\mathbb {D})$$\end{document} of all analytic functions on the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} of the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} with absolutely convergent Taylor series extended to the boundary is a Banach algebra with respect to the q-Duhamel product. We also describe the cyclic vectors of the q-integration operator on W+(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_+(\mathbb {D})$$\end{document} and characterize its commutant in terms of the q-Duhamel product operators.
引用
收藏
页码:345 / 356
页数:11
相关论文
共 50 条
  • [1] Duhamel convolution product in the setting of quantum calculus
    Bouzeffour, F.
    Garayev, M. T.
    RAMANUJAN JOURNAL, 2018, 46 (02): : 345 - 356
  • [2] CONVOLUTION SEMIGROUPS IN QUANTUM PROBABILITY AND QUANTUM STOCHASTIC CALCULUS
    BARCHIELLI, A
    LUPIERI, G
    LECTURE NOTES IN MATHEMATICS, 1989, 1396 : 107 - 127
  • [3] Quantum stochastic calculus for the uniform measure and Boolean convolution
    Privault, N
    SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 28 - 47
  • [4] Convolution λμ-calculus
    Vaux, Lionel
    TYPED LAMBDA CALCULI AND APPLICATIONS, PROCEEDINGS, 2007, 4583 : 381 - 395
  • [5] On some applications of Duhamel product
    Karaev, M. T.
    Tuna, H.
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (04): : 301 - 311
  • [6] BESSEL-WRIGHT TRANSFORM IN THE SETTING OF QUANTUM CALCULUS
    Karoui, Ilyes
    Dhaouadi, Lazhar
    Binous, Wafa
    Haddad, Meniar
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (02): : 253 - 266
  • [7] New quantum estimates in the setting of fractional calculus theory
    Rashid, Saima
    Hammouch, Zakia
    Ashraf, Rehana
    Baleanu, Dumitru
    Nisar, Kottakkaran Sooppy
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [8] New quantum estimates in the setting of fractional calculus theory
    Saima Rashid
    Zakia Hammouch
    Rehana Ashraf
    Dumitru Baleanu
    Kottakkaran Sooppy Nisar
    Advances in Difference Equations, 2020
  • [9] Some applications of the Duhamel product
    Karaev M.T.
    Journal of Mathematical Sciences, 2005, 129 (4) : 4009 - 4017
  • [10] Algebraic theory of product integrals in quantum stochastic calculus
    Hudson, RL
    Pulmannová, S
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (07) : 4967 - 4980