New quantum estimates in the setting of fractional calculus theory

被引:15
|
作者
Rashid, Saima [1 ]
Hammouch, Zakia [2 ]
Ashraf, Rehana [3 ]
Baleanu, Dumitru [4 ,5 ,6 ]
Nisar, Kottakkaran Sooppy [7 ]
机构
[1] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[2] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
[3] Lahore Coll Women Univ, Dept Math, Lahore, Pakistan
[4] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[5] Inst Space Sci, Magurele 077125, Romania
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan
[7] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia
关键词
Hahn integral operator; Reverse Minkowski quantum Hahn integral inequality; Reverse Holder quantum Hahn integral inequality; INTEGRAL-INEQUALITIES;
D O I
10.1186/s13662-020-02843-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the investigation is centered around the quantum estimates by utilizing quantum Hahn integral operator via the quantum shift operator eta psi(q)(zeta) = q zeta + (1 - q)eta, zeta is an element of [mu, nu], eta = mu+ omega/(1-q), 0 < q < 1, omega >= 0. Our strategy includes fractional calculus, Jackson's q-integral, the main ideas of quantum calculus, and a generalization used in the frame of convex functions. We presented, in general, three types of fractional quantum integral inequalities that can be utilized to explain orthogonal polynomials, and exploring some estimation problems with shifting estimations of fractional order e(1) and the q-numbers have yielded fascinating outcomes. As an application viewpoint, an illustrative example shows the effectiveness of q, omega-derivative for boundary value problem.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] New quantum estimates in the setting of fractional calculus theory
    Saima Rashid
    Zakia Hammouch
    Rehana Ashraf
    Dumitru Baleanu
    Kottakkaran Sooppy Nisar
    Advances in Difference Equations, 2020
  • [2] A new theory of fractional differential calculus
    Feng, Xiaobing
    Sutton, Mitchell
    ANALYSIS AND APPLICATIONS, 2021, 19 (04) : 715 - 750
  • [3] Certain novel estimates within fractional calculus theory on time scales
    Shen, Jian-Mei
    Rashid, Saima
    Noor, Muhammad Aslam
    Ashraf, Rehana
    Chu, Yu-Ming
    AIMS MATHEMATICS, 2020, 5 (06): : 6073 - 6086
  • [4] The Duality Theory of Fractional Calculus and a New Fractional Calculus of Variations Involving Left Operators Only
    Torres, Delfim F. M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [5] Theory of Fractional Calculus
    Altai, Abdulhameed Qahtan Abbood
    IAENG International Journal of Applied Mathematics, 2022, 52 (03)
  • [6] On quantum trigonometric fractional calculus
    Sadek, Lakhlifa
    Algefary, Ali
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 120 : 371 - 377
  • [7] SOME NEW SAIGO FRACTIONAL INTEGRAL INEQUALITIES IN QUANTUM CALCULUS
    Houas, Mohamed
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (04): : 761 - 773
  • [9] Fractional Calculus: Theory and Applications
    Mainardi, Francesco
    MATHEMATICS, 2018, 6 (09)
  • [10] Estimates of Classes of Generalized Special Functions and Their Application in the Fractional (k, s)-Calculus Theory
    Chandak, S.
    Suthar, D. L.
    AL-Omari, S.
    Gulyaz-Ozyurt, S.
    JOURNAL OF FUNCTION SPACES, 2021, 2021