New quantum estimates in the setting of fractional calculus theory

被引:15
|
作者
Rashid, Saima [1 ]
Hammouch, Zakia [2 ]
Ashraf, Rehana [3 ]
Baleanu, Dumitru [4 ,5 ,6 ]
Nisar, Kottakkaran Sooppy [7 ]
机构
[1] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[2] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
[3] Lahore Coll Women Univ, Dept Math, Lahore, Pakistan
[4] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[5] Inst Space Sci, Magurele 077125, Romania
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan
[7] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia
关键词
Hahn integral operator; Reverse Minkowski quantum Hahn integral inequality; Reverse Holder quantum Hahn integral inequality; INTEGRAL-INEQUALITIES;
D O I
10.1186/s13662-020-02843-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the investigation is centered around the quantum estimates by utilizing quantum Hahn integral operator via the quantum shift operator eta psi(q)(zeta) = q zeta + (1 - q)eta, zeta is an element of [mu, nu], eta = mu+ omega/(1-q), 0 < q < 1, omega >= 0. Our strategy includes fractional calculus, Jackson's q-integral, the main ideas of quantum calculus, and a generalization used in the frame of convex functions. We presented, in general, three types of fractional quantum integral inequalities that can be utilized to explain orthogonal polynomials, and exploring some estimation problems with shifting estimations of fractional order e(1) and the q-numbers have yielded fascinating outcomes. As an application viewpoint, an illustrative example shows the effectiveness of q, omega-derivative for boundary value problem.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Integral inequalities via fractional quantum calculus
    Weerawat Sudsutad
    Sotiris K Ntouyas
    Jessada Tariboon
    Journal of Inequalities and Applications, 2016
  • [32] Integral inequalities via fractional quantum calculus
    Sudsutad, Weerawat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 15
  • [33] NONLOCAL PHENOMENA IN QUANTUM MECHANICS WITH FRACTIONAL CALCULUS
    Atman, Kazim Gokhan
    Sirin, Huseyin
    REPORTS ON MATHEMATICAL PHYSICS, 2020, 86 (02) : 263 - 270
  • [34] Duhamel convolution product in the setting of quantum calculus
    F. Bouzeffour
    M. T. Garayev
    The Ramanujan Journal, 2018, 46 : 345 - 356
  • [35] Duhamel convolution product in the setting of quantum calculus
    Bouzeffour, F.
    Garayev, M. T.
    RAMANUJAN JOURNAL, 2018, 46 (02): : 345 - 356
  • [36] Toward a New Theory of the Fractional Quantum Hall Effect
    Mikhailov, Sergey A.
    NANOMATERIALS, 2024, 14 (03)
  • [37] Modular estimates for nonlinear integral operators and applications in fractional calculus
    Mantellini, I
    Vinti, G
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (1-2) : 143 - 165
  • [38] Analytic function theory, fractional calculus and their applications
    Srivastava, H.M.
    Owa, Shigeyoshi
    Sekine, Tadayuki
    Applied Mathematics and Computation, 2007, 187 (1 SPEC. ISS.) : 1 - 2
  • [39] SOME APPLICATIONS OF THE PERTURBATION THEORY TO FRACTIONAL CALCULUS
    Aleroev, T. S.
    Aleroeva, H. T.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2010, 50 : 129 - 138
  • [40] General fractional calculus and Prabhakar's theory
    Giusti, Andrea
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83