New quantum estimates in the setting of fractional calculus theory

被引:15
|
作者
Rashid, Saima [1 ]
Hammouch, Zakia [2 ]
Ashraf, Rehana [3 ]
Baleanu, Dumitru [4 ,5 ,6 ]
Nisar, Kottakkaran Sooppy [7 ]
机构
[1] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[2] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
[3] Lahore Coll Women Univ, Dept Math, Lahore, Pakistan
[4] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[5] Inst Space Sci, Magurele 077125, Romania
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan
[7] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia
关键词
Hahn integral operator; Reverse Minkowski quantum Hahn integral inequality; Reverse Holder quantum Hahn integral inequality; INTEGRAL-INEQUALITIES;
D O I
10.1186/s13662-020-02843-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the investigation is centered around the quantum estimates by utilizing quantum Hahn integral operator via the quantum shift operator eta psi(q)(zeta) = q zeta + (1 - q)eta, zeta is an element of [mu, nu], eta = mu+ omega/(1-q), 0 < q < 1, omega >= 0. Our strategy includes fractional calculus, Jackson's q-integral, the main ideas of quantum calculus, and a generalization used in the frame of convex functions. We presented, in general, three types of fractional quantum integral inequalities that can be utilized to explain orthogonal polynomials, and exploring some estimation problems with shifting estimations of fractional order e(1) and the q-numbers have yielded fascinating outcomes. As an application viewpoint, an illustrative example shows the effectiveness of q, omega-derivative for boundary value problem.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] New Estimates for Hermite-Hadamard Inequality in Quantum Calculus via (α, m) Convexity
    Xu, Peng
    Butt, Saad Ihsan
    Ul Ain, Qurat
    Budak, Huseyin
    SYMMETRY-BASEL, 2022, 14 (07):
  • [42] Stirling functions of the second kind in the setting of difference and fractional calculus
    Butzer, PL
    Kilbas, AA
    Trujillo, JJ
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (7-8) : 673 - 711
  • [43] On New Modifications Governed by Quantum Hahn's Integral Operator Pertaining to Fractional Calculus
    Rashid, Saima
    Khalid, Aasma
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [44] Quantum Mechanics and Control Using Fractional Calculus: A Study of the Shutter Problem for Fractional Quantum Fields
    Blackledge, Jonathan
    APPLIED MECHANICS, 2022, 3 (02): : 413 - 463
  • [45] Some new gronwall-bellmann type discrete fractional inequalities arising in the theory of discrete fractional calculus
    Feng, Qinghua (fqhua@sina.com), 1600, International Association of Engineers (46):
  • [46] PRABHAKAR AND HILFER-PRABHAKAR FRACTIONAL DERIVATIVES IN THE SETTING OF Ψ-FRACTIONAL CALCULUS AND ITS APPLICATIONS
    Magar, Sachin K.
    Dole, Pravinkumar, V
    Ghadle, Kirtiwant P.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (04): : 515 - 533
  • [47] Detection theory in quantum optics and quantum stochastic calculus
    Barchielli, A.
    Lecture Notes in Physics, 1991, (378):
  • [48] QUANTUM-THEORY AS A THEORY IN A CLASSICAL PROPOSITIONAL CALCULUS
    MALHAS, OQ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (09) : 1699 - 1714
  • [49] BESSEL-WRIGHT TRANSFORM IN THE SETTING OF QUANTUM CALCULUS
    Karoui, Ilyes
    Dhaouadi, Lazhar
    Binous, Wafa
    Haddad, Meniar
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (02): : 253 - 266
  • [50] Estimates for coefficients in Jacobi series for functions with limited regularity by fractional calculus
    Liu, Guidong
    Liu, Wenjie
    Duan, Beiping
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (04)