New quantum estimates in the setting of fractional calculus theory

被引:15
|
作者
Rashid, Saima [1 ]
Hammouch, Zakia [2 ]
Ashraf, Rehana [3 ]
Baleanu, Dumitru [4 ,5 ,6 ]
Nisar, Kottakkaran Sooppy [7 ]
机构
[1] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[2] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
[3] Lahore Coll Women Univ, Dept Math, Lahore, Pakistan
[4] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[5] Inst Space Sci, Magurele 077125, Romania
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan
[7] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia
关键词
Hahn integral operator; Reverse Minkowski quantum Hahn integral inequality; Reverse Holder quantum Hahn integral inequality; INTEGRAL-INEQUALITIES;
D O I
10.1186/s13662-020-02843-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the investigation is centered around the quantum estimates by utilizing quantum Hahn integral operator via the quantum shift operator eta psi(q)(zeta) = q zeta + (1 - q)eta, zeta is an element of [mu, nu], eta = mu+ omega/(1-q), 0 < q < 1, omega >= 0. Our strategy includes fractional calculus, Jackson's q-integral, the main ideas of quantum calculus, and a generalization used in the frame of convex functions. We presented, in general, three types of fractional quantum integral inequalities that can be utilized to explain orthogonal polynomials, and exploring some estimation problems with shifting estimations of fractional order e(1) and the q-numbers have yielded fascinating outcomes. As an application viewpoint, an illustrative example shows the effectiveness of q, omega-derivative for boundary value problem.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Fractional calculus in the Mellin setting and Hadamard-type fractional integrals
    Butzer, PL
    Kilbas, AA
    Trujillo, JJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (01) : 1 - 27
  • [22] Accurate estimates of asymptotic indices via fractional calculus
    Sharmistha Dhatt
    Kamal Bhattacharyya
    Journal of Mathematical Chemistry, 2014, 52 : 231 - 239
  • [23] Multidimensional Fractional Calculus: Theory and Applications
    Kostic, Marko
    AXIOMS, 2024, 13 (09)
  • [24] Theory, Methods, and Applications of Fractional Calculus
    Atangana, Abdon
    Kilicman, Adem
    Noutchie, Suares Clovis Oukouomi
    Secer, Aydin
    Ray, Santanu Saha
    El-Sayed, Ahmed M. A.
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [25] APPLICATIONS OF FRACTIONAL CALCULUS TO THE THEORY OF VISCOELASTICITY
    KOELLER, RC
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (02): : 299 - 307
  • [26] Hermite-Hadamard type inequalities in the setting of k-fractional calculus theory with applications
    Bin-Mohsen, Bandar
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    AIMS MATHEMATICS, 2020, 5 (01): : 629 - 639
  • [27] On New Applications of Fractional Calculus
    Jain, Shilpi
    Agarwal, Praveen
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (03): : 113 - 118
  • [28] On New Estimates of q-Hermite-Hadamard Inequalities with Applications in Quantum Calculus
    Chasreechai, Saowaluck
    Ali, Muhammad Aamir
    Ashraf, Muhammad Amir
    Sitthiwirattham, Thanin
    Etemad, Sina
    De la Sen, Manuel
    Rezapour, Shahram
    AXIOMS, 2023, 12 (01)
  • [29] The Foundations of Fractional Calculus in the Mellin Transform Setting with Applications
    Bardaro, Carlo
    Butzer, Paul L.
    Mantellini, Ilaria
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (05) : 961 - 1017
  • [30] The Foundations of Fractional Calculus in the Mellin Transform Setting with Applications
    Carlo Bardaro
    Paul L. Butzer
    Ilaria Mantellini
    Journal of Fourier Analysis and Applications, 2015, 21 : 961 - 1017