Duhamel convolution product in the setting of quantum calculus

被引:0
|
作者
F. Bouzeffour
M. T. Garayev
机构
[1] King Saud University,Department of Mathematics, College of Sciences
来源
The Ramanujan Journal | 2018年 / 46卷
关键词
Duhamel product; -Difference operator; -Integral ; -special functions; -Duhamel product; Primary 33D45; Secondary 96J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the notions of the q-Duhamel product and q-integration operator. We prove that the classical Wiener algebra W+(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_+(\mathbb {D})$$\end{document} of all analytic functions on the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} of the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} with absolutely convergent Taylor series extended to the boundary is a Banach algebra with respect to the q-Duhamel product. We also describe the cyclic vectors of the q-integration operator on W+(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_+(\mathbb {D})$$\end{document} and characterize its commutant in terms of the q-Duhamel product operators.
引用
收藏
页码:345 / 356
页数:11
相关论文
共 50 条
  • [21] Forward and backward adapted quantum stochastic calculus and double product integrals
    Hudson, R. L.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2014, 21 (03) : 348 - 361
  • [22] Forward and backward adapted quantum stochastic calculus and double product integrals
    R. L. Hudson
    Russian Journal of Mathematical Physics, 2014, 21 : 348 - 361
  • [23] Convolution product and resurgence
    Kamimoto, Shingo
    COMPLEX DIFFERENTIAL AND DIFFERENCE EQUATIONS, 2019, : 219 - 241
  • [24] A NOTE ON CONVOLUTION OPERATORS IN WHITE NOISE CALCULUS
    Obata, Nobuaki
    Ouerdiane, Habib
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 14 (04) : 661 - 674
  • [25] POLAROGRAPHIC APPLICATIONS OF FRACTIONAL CALCULUS CONVOLUTION TECHNIQUES
    SOONG, FC
    MALOY, JT
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1981, 182 (AUG): : 69 - ANYL
  • [26] Boolean convolution in the quaternionic setting
    Alpay, Daniel
    Bozejko, Marek
    Colombo, Fabrizio
    Kimsey, David P.
    Sabadini, Irene
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 506 : 382 - 412
  • [27] A functional calculus in a noncommutative setting
    Colombo, Fabrizio
    Gentili, Graziano
    Sabadini, Irene
    Struppa, Daniele C.
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2007, 14 : 60 - 68
  • [28] Ito calculus and quantum white noise calculus
    Accardi, Luigi
    Boukas, Andreas
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 2 : 7 - +
  • [29] Invariant subspaces of operators via Berezin symbols and Duhamel product
    Tapdigoglu Garayev, Mubariz
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (07) : 2139 - 2148
  • [30] On Convolution and Product Theorems for FRFT
    Singh, A. K.
    Saxena, R.
    WIRELESS PERSONAL COMMUNICATIONS, 2012, 65 (01) : 189 - 201