Duhamel convolution product in the setting of quantum calculus

被引:0
|
作者
F. Bouzeffour
M. T. Garayev
机构
[1] King Saud University,Department of Mathematics, College of Sciences
来源
The Ramanujan Journal | 2018年 / 46卷
关键词
Duhamel product; -Difference operator; -Integral ; -special functions; -Duhamel product; Primary 33D45; Secondary 96J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the notions of the q-Duhamel product and q-integration operator. We prove that the classical Wiener algebra W+(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_+(\mathbb {D})$$\end{document} of all analytic functions on the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} of the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} with absolutely convergent Taylor series extended to the boundary is a Banach algebra with respect to the q-Duhamel product. We also describe the cyclic vectors of the q-integration operator on W+(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_+(\mathbb {D})$$\end{document} and characterize its commutant in terms of the q-Duhamel product operators.
引用
收藏
页码:345 / 356
页数:11
相关论文
共 50 条
  • [41] Quantum Schubert calculus
    Bertram, A
    ADVANCES IN MATHEMATICS, 1997, 128 (02) : 289 - 305
  • [42] QUANTUM REGGE CALCULUS
    ROCEK, M
    WILLIAMS, RM
    PHYSICS LETTERS B, 1981, 104 (01) : 31 - 37
  • [43] ON CONVOLUTION QUADRATURE AND HILLE-PHILLIPS OPERATIONAL CALCULUS
    LUBICH, C
    APPLIED NUMERICAL MATHEMATICS, 1992, 9 (3-5) : 187 - 199
  • [44] Infinity-operads and Day convolution in Goodwillie calculus
    Ching, Michael
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (03): : 1204 - 1249
  • [45] CONVOLUTION QUADRATURE AND DISCRETIZED OPERATIONAL CALCULUS .1.
    LUBICH, C
    NUMERISCHE MATHEMATIK, 1988, 52 (02) : 129 - 145
  • [46] NUMERICAL ALGORITHM BASED ON FAST CONVOLUTION FOR FRACTIONAL CALCULUS
    Chen, An
    Guo, Peng
    Li, Changpin
    THERMAL SCIENCE, 2012, 16 (02): : 365 - 371
  • [47] The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus
    Liu, Yang
    Yin, Baoli
    Li, Hong
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)
  • [48] The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus
    Yang Liu
    Baoli Yin
    Hong Li
    Zhimin Zhang
    Journal of Scientific Computing, 2021, 89
  • [49] On extremal domains and codomains for convolution of distributions and fractional calculus
    T. Kleiner
    R. Hilfer
    Monatshefte für Mathematik, 2022, 198 : 121 - 152
  • [50] On extremal domains and codomains for convolution of distributions and fractional calculus
    Kleiner, T.
    Hilfer, R.
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (01): : 121 - 152