Duhamel convolution product in the setting of quantum calculus

被引:0
|
作者
F. Bouzeffour
M. T. Garayev
机构
[1] King Saud University,Department of Mathematics, College of Sciences
来源
The Ramanujan Journal | 2018年 / 46卷
关键词
Duhamel product; -Difference operator; -Integral ; -special functions; -Duhamel product; Primary 33D45; Secondary 96J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the notions of the q-Duhamel product and q-integration operator. We prove that the classical Wiener algebra W+(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_+(\mathbb {D})$$\end{document} of all analytic functions on the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} of the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} with absolutely convergent Taylor series extended to the boundary is a Banach algebra with respect to the q-Duhamel product. We also describe the cyclic vectors of the q-integration operator on W+(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_+(\mathbb {D})$$\end{document} and characterize its commutant in terms of the q-Duhamel product operators.
引用
收藏
页码:345 / 356
页数:11
相关论文
共 50 条