A Shifted-Barrier Primal-Dual Algorithm Model for Linearly Constrained Optimization Problems

被引:0
|
作者
Gianni Di Pillo
Stefano Lucidi
Laura Palagi
机构
[1] Università di Roma “La Sapienza”,Dipartimento di Informatica e Sistemistica
关键词
linearly constrained optimization; primal-dual algorithm; Penalty-Lagrangian merit function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe a Newton-type algorithm model for solving smooth constrained optimization problems with nonlinear objective function, general linear constraints and bounded variables. The algorithm model is based on the definition of a continuously differentiable exact merit function that follows an exact penalty approach for the box constraints and an exact augmented Lagrangian approach for the general linear constraints. Under very mild assumptions and without requiring the strict complementarity assumption, the algorithm model produces a sequence of pairs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ x^k ,\lambda ^k \} $$ \end{document} converging quadratically to a pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x,\bar \lambda )$$ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar x$$ \end{document} satisfies the first order necessary conditions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \lambda $$ \end{document} is a KKT multipliers vector associated to the linear constraints. As regards the behaviour of the sequence xk alone, it is guaranteed that it converges at least superlinearly. At each iteration, the algorithm requires only the solution of a linear system that can be performed by means of conjugate gradient methods. Numerical experiments and comparison are reported.
引用
收藏
页码:157 / 188
页数:31
相关论文
共 50 条
  • [41] Inertial accelerated primal-dual methods for linear equality constrained convex optimization problems
    He, Xin
    Hu, Rong
    Fang, Ya-Ping
    NUMERICAL ALGORITHMS, 2022, 90 (04) : 1669 - 1690
  • [42] Primal-dual interior point QP-free algorithm for nonlinear constrained optimization
    Jinbao Jian
    Hanjun Zeng
    Guodong Ma
    Zhibin Zhu
    Journal of Inequalities and Applications, 2017
  • [44] A globally and quadratically convergent primal-dual augmented Lagrangian algorithm for equality constrained optimization
    Armand, Paul
    Omheni, Riadh
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (01): : 1 - 21
  • [45] A stochastic primal-dual splitting algorithm with variance reduction for composite optimization problems
    Nguyen, Van Dung
    Vu, Bang Cong
    Papadimitriou, Dimitri
    APPLICABLE ANALYSIS, 2024,
  • [46] A hybrid primal-dual algorithm with application to the dual transportation problems
    Choi, G
    Kim, C
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 261 - 268
  • [47] Primal-dual interior point QP-free algorithm for nonlinear constrained optimization
    Jian, Jinbao
    Zeng, Hanjun
    Ma, Guodong
    Zhu, Zhibin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [48] A primal-dual proximal point algorithm for constrained convex programs
    Hamdi, A
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 162 (01) : 293 - 303
  • [49] A stochastic primal-dual method for a class of nonconvex constrained optimization
    Jin, Lingzi
    Wang, Xiao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (01) : 143 - 180
  • [50] A stochastic primal-dual method for a class of nonconvex constrained optimization
    Lingzi Jin
    Xiao Wang
    Computational Optimization and Applications, 2022, 83 : 143 - 180