A Shifted-Barrier Primal-Dual Algorithm Model for Linearly Constrained Optimization Problems

被引:0
|
作者
Gianni Di Pillo
Stefano Lucidi
Laura Palagi
机构
[1] Università di Roma “La Sapienza”,Dipartimento di Informatica e Sistemistica
关键词
linearly constrained optimization; primal-dual algorithm; Penalty-Lagrangian merit function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe a Newton-type algorithm model for solving smooth constrained optimization problems with nonlinear objective function, general linear constraints and bounded variables. The algorithm model is based on the definition of a continuously differentiable exact merit function that follows an exact penalty approach for the box constraints and an exact augmented Lagrangian approach for the general linear constraints. Under very mild assumptions and without requiring the strict complementarity assumption, the algorithm model produces a sequence of pairs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ x^k ,\lambda ^k \} $$ \end{document} converging quadratically to a pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x,\bar \lambda )$$ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar x$$ \end{document} satisfies the first order necessary conditions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \lambda $$ \end{document} is a KKT multipliers vector associated to the linear constraints. As regards the behaviour of the sequence xk alone, it is guaranteed that it converges at least superlinearly. At each iteration, the algorithm requires only the solution of a linear system that can be performed by means of conjugate gradient methods. Numerical experiments and comparison are reported.
引用
收藏
页码:157 / 188
页数:31
相关论文
共 50 条
  • [21] An inertial primal-dual fixed point algorithm for composite optimization problems
    Wen, Meng
    Tang, Yuchao
    Cui, Angang
    Peng, Jigen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 10628 - 10639
  • [22] A Splitting Primal-dual Proximity Algorithm for Solving Composite Optimization Problems
    Yu Chao TANG
    Chuan Xi ZHU
    Meng WEN
    Ji Gen PENG
    ActaMathematicaSinica, 2017, 33 (06) : 868 - 886
  • [23] A Splitting Primal-dual Proximity Algorithm for Solving Composite Optimization Problems
    Yu Chao TANG
    Chuan Xi ZHU
    Meng WEN
    Ji Gen PENG
    Acta Mathematica Sinica,English Series, 2017, (06) : 868 - 886
  • [24] Distributed Primal-Dual Splitting Algorithm for Multiblock Separable Optimization Problems
    Li, Huaqing
    Wu, Xiangzhao
    Wang, Zheng
    Huang, Tingwen
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4264 - 4271
  • [25] A splitting primal-dual proximity algorithm for solving composite optimization problems
    Yu Chao Tang
    Chuan Xi Zhu
    Meng Wen
    Ji Gen Peng
    Acta Mathematica Sinica, English Series, 2017, 33 : 868 - 886
  • [26] Primal-dual strategy for constrained optimal control problems
    Bergounioux, M
    Ito, K
    Kunisch, K
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) : 1176 - 1194
  • [27] Primal-Dual Algorithms for Precedence Constrained Covering Problems
    Wierz, Andreas
    Peis, Britta
    McCormick, S. Thomas
    APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2014, 2015, 8952 : 260 - 272
  • [28] Primal-Dual Algorithms for Precedence Constrained Covering Problems
    McCormick, S. Thomas
    Peis, Britta
    Verschae, Jos
    Wierz, Andreas
    ALGORITHMICA, 2017, 78 (03) : 771 - 787
  • [29] A primal-dual modified log-barrier method for inequality constrained nonlinear optimization
    Griffin, Joshua
    Omheni, Riadh
    OPTIMIZATION LETTERS, 2020, 14 (08) : 2461 - 2477
  • [30] A primal-dual flow for affine constrained convex optimization
    Luo, Hao
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28