A Shifted-Barrier Primal-Dual Algorithm Model for Linearly Constrained Optimization Problems

被引:0
|
作者
Gianni Di Pillo
Stefano Lucidi
Laura Palagi
机构
[1] Università di Roma “La Sapienza”,Dipartimento di Informatica e Sistemistica
关键词
linearly constrained optimization; primal-dual algorithm; Penalty-Lagrangian merit function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe a Newton-type algorithm model for solving smooth constrained optimization problems with nonlinear objective function, general linear constraints and bounded variables. The algorithm model is based on the definition of a continuously differentiable exact merit function that follows an exact penalty approach for the box constraints and an exact augmented Lagrangian approach for the general linear constraints. Under very mild assumptions and without requiring the strict complementarity assumption, the algorithm model produces a sequence of pairs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ x^k ,\lambda ^k \} $$ \end{document} converging quadratically to a pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x,\bar \lambda )$$ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar x$$ \end{document} satisfies the first order necessary conditions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \lambda $$ \end{document} is a KKT multipliers vector associated to the linear constraints. As regards the behaviour of the sequence xk alone, it is guaranteed that it converges at least superlinearly. At each iteration, the algorithm requires only the solution of a linear system that can be performed by means of conjugate gradient methods. Numerical experiments and comparison are reported.
引用
收藏
页码:157 / 188
页数:31
相关论文
共 50 条
  • [11] Primal-dual subgradient method for constrained convex optimization problems
    Michael R. Metel
    Akiko Takeda
    Optimization Letters, 2021, 15 : 1491 - 1504
  • [12] Primal-dual stochastic distributed algorithm for constrained convex optimization
    Niu, Youcheng
    Wang, Haijing
    Wang, Zheng
    Xia, Dawen
    Li, Huaqing
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9763 - 9787
  • [13] A fast primal-dual algorithm via dynamical system with variable mass for linearly constrained convex optimization
    Jiang, Ziyi
    Wang, Dan
    Liu, Xinwei
    OPTIMIZATION LETTERS, 2024, 18 (08) : 1855 - 1880
  • [14] An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization Problems
    Viet Hung Nguyen
    Weng, Paul
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT I, 2017, 10627 : 324 - 339
  • [15] An Adaptive Primal-Dual Subgradient Algorithm for Online Distributed Constrained Optimization
    Yuan, Deming
    Ho, Daniel W. C.
    Jiang, Guo-Ping
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (11) : 3045 - 3055
  • [16] A Primal-Dual Algorithm for Distributed Optimization
    Bianchi, P.
    Hachem, W.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 4240 - 4245
  • [17] An Infeasible Primal-Dual Interior-Point Algorithm for Linearly Constrained Convex Optimization Based on A Parametric Kernel Function
    Wang, Guoqiang
    Wang, Baocun
    Fan, Qingduan
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 900 - +
  • [18] Decentralized Primal-Dual Proximal Operator Algorithm for Constrained Nonsmooth Composite Optimization Problems over Networks
    Feng, Liping
    Ran, Liang
    Meng, Guoyang
    Tang, Jialong
    Ding, Wentao
    Li, Huaqing
    ENTROPY, 2022, 24 (09)
  • [19] Primal-Dual Relationship Between Levenberg–Marquardt and Central Trajectories for Linearly Constrained Convex Optimization
    Roger Behling
    Clovis Gonzaga
    Gabriel Haeser
    Journal of Optimization Theory and Applications, 2014, 162 : 705 - 717
  • [20] A Splitting Primal-dual Proximity Algorithm for Solving Composite Optimization Problems
    Tang, Yu Chao
    Zhu, Chuan Xi
    Wen, Meng
    Peng, Ji Gen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) : 868 - 886