A Shifted-Barrier Primal-Dual Algorithm Model for Linearly Constrained Optimization Problems

被引:0
|
作者
Gianni Di Pillo
Stefano Lucidi
Laura Palagi
机构
[1] Università di Roma “La Sapienza”,Dipartimento di Informatica e Sistemistica
关键词
linearly constrained optimization; primal-dual algorithm; Penalty-Lagrangian merit function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe a Newton-type algorithm model for solving smooth constrained optimization problems with nonlinear objective function, general linear constraints and bounded variables. The algorithm model is based on the definition of a continuously differentiable exact merit function that follows an exact penalty approach for the box constraints and an exact augmented Lagrangian approach for the general linear constraints. Under very mild assumptions and without requiring the strict complementarity assumption, the algorithm model produces a sequence of pairs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ x^k ,\lambda ^k \} $$ \end{document} converging quadratically to a pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x,\bar \lambda )$$ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar x$$ \end{document} satisfies the first order necessary conditions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \lambda $$ \end{document} is a KKT multipliers vector associated to the linear constraints. As regards the behaviour of the sequence xk alone, it is guaranteed that it converges at least superlinearly. At each iteration, the algorithm requires only the solution of a linear system that can be performed by means of conjugate gradient methods. Numerical experiments and comparison are reported.
引用
收藏
页码:157 / 188
页数:31
相关论文
共 50 条
  • [31] MODIFICATION OF PRIMAL-DUAL ALGORITHM FOR DEGENERATE PROBLEMS
    GREENBER.H
    OPERATIONS RESEARCH, 1968, 16 (06) : 1227 - &
  • [32] Study of a primal-dual algorithm for equality constrained minimization
    Armand, Paul
    Benoist, Joel
    Omheni, Riadh
    Pateloup, Vincent
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (03) : 405 - 433
  • [33] Study of a primal-dual algorithm for equality constrained minimization
    Paul Armand
    Joël Benoist
    Riadh Omheni
    Vincent Pateloup
    Computational Optimization and Applications, 2014, 59 : 405 - 433
  • [34] Distributed Primal-Dual Methods for Online Constrained Optimization
    Lee, Soomin
    Zavlanos, Michael M.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 7171 - 7176
  • [35] A superlinearly convergent primal - Dual algorithm model for constrained optimization problems with bounded variables
    Di Pillo, G
    Lucidi, S
    Palagi, L
    OPTIMIZATION METHODS & SOFTWARE, 2000, 14 (1-2): : 49 - 73
  • [36] A primal-dual interior-point algorithm for nonlinear least squares constrained problems
    M. Fernanda
    P. Costa
    Edite M. G. P. Fernandes
    Top, 2005, 13 (1) : 145 - 166
  • [37] Primal-Dual Relationship Between Levenberg-Marquardt and Central Trajectories for Linearly Constrained Convex Optimization
    Behling, Roger
    Gonzaga, Clovis
    Haeser, Gabriel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 162 (03) : 705 - 717
  • [38] Accelerated Primal-Dual Mirror Dynamics for Centralized and Distributed Constrained Convex Optimization Problems
    Zhao, You
    Liao, Xiaofeng
    He, Xing
    Zhou, Mingliang
    Li, Chaojie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [39] A Second-Order Primal-Dual Dynamics for Set Constrained Distributed Optimization Problems
    Tao, Meng
    Guo, Luyao
    Cao, Jinde
    Rutkowski, Leszek
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (03) : 1316 - 1320
  • [40] Inertial accelerated primal-dual methods for linear equality constrained convex optimization problems
    Xin He
    Rong Hu
    Ya-Ping Fang
    Numerical Algorithms, 2022, 90 : 1669 - 1690