A Shifted-Barrier Primal-Dual Algorithm Model for Linearly Constrained Optimization Problems

被引:0
|
作者
Gianni Di Pillo
Stefano Lucidi
Laura Palagi
机构
[1] Università di Roma “La Sapienza”,Dipartimento di Informatica e Sistemistica
关键词
linearly constrained optimization; primal-dual algorithm; Penalty-Lagrangian merit function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe a Newton-type algorithm model for solving smooth constrained optimization problems with nonlinear objective function, general linear constraints and bounded variables. The algorithm model is based on the definition of a continuously differentiable exact merit function that follows an exact penalty approach for the box constraints and an exact augmented Lagrangian approach for the general linear constraints. Under very mild assumptions and without requiring the strict complementarity assumption, the algorithm model produces a sequence of pairs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ x^k ,\lambda ^k \} $$ \end{document} converging quadratically to a pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x,\bar \lambda )$$ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar x$$ \end{document} satisfies the first order necessary conditions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \lambda $$ \end{document} is a KKT multipliers vector associated to the linear constraints. As regards the behaviour of the sequence xk alone, it is guaranteed that it converges at least superlinearly. At each iteration, the algorithm requires only the solution of a linear system that can be performed by means of conjugate gradient methods. Numerical experiments and comparison are reported.
引用
收藏
页码:157 / 188
页数:31
相关论文
共 50 条
  • [1] A shifted-barrier primal-dual algorithm model for linearly constrained optimization problems
    Di Pillo, G
    Lucidi, S
    Palagi, L
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) : 157 - 188
  • [2] Primal-dual algorithm for distributed constrained optimization
    Lei, Jinlong
    Chen, Han-Fu
    Fang, Hai-Tao
    SYSTEMS & CONTROL LETTERS, 2016, 96 : 110 - 117
  • [3] Inertial primal-dual dynamics with damping and scaling for linearly constrained convex optimization problems
    He, Xin
    Hu, Rong
    Fang, Ya-Ping
    APPLICABLE ANALYSIS, 2023, 102 (15) : 4114 - 4139
  • [4] A stochastic primal-dual algorithm for composite constrained optimization
    Su, Enbing
    Hu, Zhihuan
    Xie, Wei
    Li, Li
    Zhang, Weidong
    NEUROCOMPUTING, 2024, 604
  • [5] Fast primal-dual algorithm via dynamical system for a linearly constrained convex optimization problem
    He, Xin
    Hu, Rong
    Fang, Ya-Ping
    AUTOMATICA, 2022, 146
  • [6] A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR NONLINEAR OPTIMIZATION
    Gill, Philip E.
    Kungurtsev, Vyacheslav
    Robinson, Daniel P.
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1067 - 1093
  • [7] A Unified Primal-Dual Algorithm Framework for Inequality Constrained Problems
    Zhu, Zhenyuan
    Chen, Fan
    Zhang, Junyu
    Wen, Zaiwen
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (02)
  • [8] A Unified Primal-Dual Algorithm Framework for Inequality Constrained Problems
    Zhenyuan Zhu
    Fan Chen
    Junyu Zhang
    Zaiwen Wen
    Journal of Scientific Computing, 2023, 97
  • [9] A primal-dual method for conic constrained distributed optimization problems
    Aybat, Necdet Serhat
    Hamedani, Erfan Yazdandoost
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [10] Primal-dual subgradient method for constrained convex optimization problems
    Metel, Michael R.
    Takeda, Akiko
    OPTIMIZATION LETTERS, 2021, 15 (04) : 1491 - 1504