Maximum Distance Separable Codes in the ρ Metric over Arbitrary Alphabets

被引:0
|
作者
Steven T. Dougherty
Maxim M. Skriganov
机构
[1] University of Scranton,Department of Mathematics
[2] Steklov Institute of Mathematics at,undefined
来源
关键词
MDS codes; uniform distributions;
D O I
暂无
中图分类号
学科分类号
摘要
We give a bound for codes over an arbitrary alphabet in a non-Hamming metric and define MDS codes as codes meeting this bound. We show that MDS codes are precisely those codes that are uniformly distributed and show that their weight enumerators based on this metric are uniquely determined.
引用
收藏
页码:71 / 81
页数:10
相关论文
共 50 条
  • [21] Maximum Distance Separable Symbol-Pair Codes
    Chee, Yeow Meng
    Kiah, Han Mao
    Wang, Chengmin
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [22] THE 4 CASES OF WRITE UNIDIRECTIONAL MEMORY CODES OVER ARBITRARY ALPHABETS
    VANOVERVELD, WMCJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (03) : 872 - 878
  • [23] Maximum Distance Separable Array Codes Allowing Partial Collaboration
    Zhang, Yuejia
    Liu, Shiqiu
    Chen, Li
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1612 - 1615
  • [24] Maximum Distance Separable 2D Convolutional Codes
    Climent, Joan-Josep
    Napp, Diego
    Perea, Carmen
    Pinto, Raquel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (02) : 669 - 680
  • [25] Maximum distance separable codes over Z2 x Z2s
    Samei, Karim
    Sadeghi, Sadegh
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (07)
  • [26] A New Construction of Maximum Distance Separable (MDS) Self-Dual Codes over Finite Fields
    Zhang, Aixian
    Ji, Zhe
    ENTROPY, 2019, 21 (02):
  • [27] Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes
    Yang Liu
    Ruihu Li
    Liangdong Lv
    Yuena Ma
    Quantum Information Processing, 2018, 17
  • [28] Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes
    Liu, Yang
    Li, Ruihu
    Lv, Liangdong
    Ma, Yuena
    QUANTUM INFORMATION PROCESSING, 2018, 17 (08)
  • [29] MacWilliams extension property for arbitrary weights on linear codes over module alphabets
    Dyshko, Serhii
    Wood, Jay A.
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (11) : 2683 - 2701
  • [30] MacWilliams extension property for arbitrary weights on linear codes over module alphabets
    Serhii Dyshko
    Jay A. Wood
    Designs, Codes and Cryptography, 2022, 90 : 2683 - 2701