Maximum Distance Separable 2D Convolutional Codes

被引:12
|
作者
Climent, Joan-Josep [1 ]
Napp, Diego [2 ]
Perea, Carmen [3 ]
Pinto, Raquel [2 ]
机构
[1] Univ Alacant, Dept Matemat, E-03080 Alicant, Spain
[2] Univ Aveiro, Ctr Res & Dev Math & Applicat, Dept Math, P-3810193 Aveiro, Portugal
[3] Univ Miguel Hernandez Elche, Ctr Invest Operativa, Dept Estadist Matemat & Informat, E-03202 Elche, Spain
关键词
2D convolutional code; generalized Singleton bound; maximum distance separable code; superregular matrix; circulant Cauchy matrix; SUPERREGULAR MATRICES; CONSTRUCTIONS;
D O I
10.1109/TIT.2015.2509075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maximum distance separable (MDS) block codes and MDS 1D convolutional codes are the most robust codes for error correction within the class of block codes of a fixed rate and 1D convolutional codes of a certain rate and degree, respectively. In this paper, we generalize this concept to the class of 2D convolutional codes. For that, we introduce a natural bound on the distance of a 2D convolutional code of rate k/n and degree d, which generalizes the Singleton bound for block codes and the generalized Singleton bound for 1D convolutional codes. Then, we prove the existence of 2D convolutional codes of rate k/n and degree delta that reach such bound when n >= k(((left perpendicular (d/k) right perpendicular + 2)(left perpendicular (delta/k) right perpendicular + 3))/2) if k inverted iota delta, or n >= k((((delta/k) + 1)((delta/k) + 2))/2) if k vertical bar delta, by presenting a concrete constructive procedure.
引用
收藏
页码:669 / 680
页数:12
相关论文
共 50 条