Maximum Distance Separable 2D Convolutional Codes

被引:12
|
作者
Climent, Joan-Josep [1 ]
Napp, Diego [2 ]
Perea, Carmen [3 ]
Pinto, Raquel [2 ]
机构
[1] Univ Alacant, Dept Matemat, E-03080 Alicant, Spain
[2] Univ Aveiro, Ctr Res & Dev Math & Applicat, Dept Math, P-3810193 Aveiro, Portugal
[3] Univ Miguel Hernandez Elche, Ctr Invest Operativa, Dept Estadist Matemat & Informat, E-03202 Elche, Spain
关键词
2D convolutional code; generalized Singleton bound; maximum distance separable code; superregular matrix; circulant Cauchy matrix; SUPERREGULAR MATRICES; CONSTRUCTIONS;
D O I
10.1109/TIT.2015.2509075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maximum distance separable (MDS) block codes and MDS 1D convolutional codes are the most robust codes for error correction within the class of block codes of a fixed rate and 1D convolutional codes of a certain rate and degree, respectively. In this paper, we generalize this concept to the class of 2D convolutional codes. For that, we introduce a natural bound on the distance of a 2D convolutional code of rate k/n and degree d, which generalizes the Singleton bound for block codes and the generalized Singleton bound for 1D convolutional codes. Then, we prove the existence of 2D convolutional codes of rate k/n and degree delta that reach such bound when n >= k(((left perpendicular (d/k) right perpendicular + 2)(left perpendicular (delta/k) right perpendicular + 3))/2) if k inverted iota delta, or n >= k((((delta/k) + 1)((delta/k) + 2))/2) if k vertical bar delta, by presenting a concrete constructive procedure.
引用
收藏
页码:669 / 680
页数:12
相关论文
共 50 条
  • [21] Unit memory convolutional codes with maximum distance
    Smarandache, R
    CODES, SYSTEMS, AND GRAPHICAL MODELS, 2001, 123 : 381 - 396
  • [22] Series concatenation of 2D convolutional codes
    Climent, Joan-Josep
    Napp, Diego
    Pinto, Raquel
    Simoes, Rita
    2015 IEEE 9TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS), 2015,
  • [23] Maximum Distance Separable Array Codes Allowing Partial Collaboration
    Zhang, Yuejia
    Liu, Shiqiu
    Chen, Li
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1612 - 1615
  • [24] Maximum Distance Separable Codes in the ρ Metric over Arbitrary Alphabets
    Steven T. Dougherty
    Maxim M. Skriganov
    Journal of Algebraic Combinatorics, 2002, 16 : 71 - 81
  • [25] Maximum distance separable codes in the ρ metric over arbitrary alphabets
    Dougherty, Steven T.
    Skriganov, Maxim M.
    1600, Kluwer Academic Publishers (16):
  • [26] Maximum distance separable codes in the ρ metric over arbitrary alphabets
    Dougherty, ST
    Skriganov, MM
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2002, 16 (01) : 71 - 81
  • [27] Arbitrary rate maximum-distance separable wavelet codes
    Fekri, F
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 2253 - 2256
  • [28] From 1D Convolutional Codes to 2D Convolutional Codes of Rate 1/n
    Almeida, Paulo
    Napp, Diego
    Pinto, Raquel
    CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 25 - 33
  • [29] On the existence and construction of maximum distance profile convolutional codes
    Castaneda, Angel Luis Munoz
    Plaza-Martin, Francisco J.
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 75
  • [30] Burst Erasure Correction of 2D Convolutional Codes
    Climent, Joan-Josep
    Napp, Diego
    Pinto, Raquel
    Simoes, Rita
    CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 115 - 123