Maximum Distance Separable Symbol-Pair Codes

被引:0
|
作者
Chee, Yeow Meng [1 ]
Kiah, Han Mao [1 ]
Wang, Chengmin [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
关键词
PERFECT MENDELSOHN DESIGNS; EXISTENCE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study (symbol-pair) codes for symbol- pair read channels introduced recently by Cassuto and Blaum (2010). A Singleton-type bound on symbol- pair codes is established and infinite families of optimal symbol- pair codes are constructed. These codes are maximum distance separable (MDS) in the sense that they meet the Singleton-type bound. In contrast to classical codes, where all known q-ary MDS codes have length O(q), we show that q-ary MDS symbol- pair codes can have length Omega(q(2)). We also construct equidistant cyclic MDS symbol- pair codes from Mendelsohn designs.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Maximum Distance Separable Codes for Symbol-Pair Read Channels
    Chee, Yeow Meng
    Ji, Lijun
    Kiah, Han Mao
    Wang, Chengmin
    Yin, Jianxing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7259 - 7267
  • [2] Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes
    Shuxing Li
    Gennian Ge
    Designs, Codes and Cryptography, 2017, 84 : 359 - 372
  • [3] Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes
    Li, Shuxing
    Ge, Gennian
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (03) : 359 - 372
  • [4] A new family of AMDS symbol-pair constacyclic codes of length 4p and symbol-pair distance 9
    Dinh, Hai Q.
    Ha, Hieu V.
    Nguyen, Bac T.
    Vo, Thieu N.
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [5] Codes for Symbol-Pair Read Channels
    Cassuto, Yuval
    Blaum, Mario
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (12) : 8011 - 8020
  • [6] Constructions of MDS symbol-pair codes with minimum distance seven or eight
    Junru Ma
    Jinquan Luo
    Designs, Codes and Cryptography, 2022, 90 : 2337 - 2359
  • [7] List Decodability of Symbol-Pair Codes
    Liu, Shu
    Xing, Chaoping
    Yuan, Chen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 4815 - 4821
  • [8] Syndrome Decoding of Symbol-Pair Codes
    Takita, Makoto
    Hirotomo, Masanori
    Morii, Masakatu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (12): : 2423 - 2428
  • [9] The Plotkin-Type Bound on the Generalized Symbol-Pair Weight and Symbol-Pair Equiweight Codes
    Liang, Yinghao
    Liu, Zihui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 4990 - 5001
  • [10] Syndrome Decoding of Symbol-Pair Codes
    Hirotomo, Masanori
    Takita, Makoto
    Morii, Masakatu
    2014 IEEE INFORMATION THEORY WORKSHOP (ITW), 2014, : 162 - 166