Maximum Distance Separable Codes in the ρ Metric over Arbitrary Alphabets

被引:0
|
作者
Steven T. Dougherty
Maxim M. Skriganov
机构
[1] University of Scranton,Department of Mathematics
[2] Steklov Institute of Mathematics at,undefined
来源
关键词
MDS codes; uniform distributions;
D O I
暂无
中图分类号
学科分类号
摘要
We give a bound for codes over an arbitrary alphabet in a non-Hamming metric and define MDS codes as codes meeting this bound. We show that MDS codes are precisely those codes that are uniformly distributed and show that their weight enumerators based on this metric are uniquely determined.
引用
收藏
页码:71 / 81
页数:10
相关论文
共 50 条
  • [31] The burst weight distributions of maximum-Hamming-distance-separable codes
    Hamada, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (01) : 404 - 406
  • [32] Maximum Distance Separable Codes for Symbol-Pair Read Channels
    Chee, Yeow Meng
    Ji, Lijun
    Kiah, Han Mao
    Wang, Chengmin
    Yin, Jianxing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7259 - 7267
  • [33] Maximum distance separable codes for b-symbol read channels
    Ding, Baokun
    Zhang, Tao
    Ge, Gennian
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 49 : 180 - 197
  • [34] De Bruijn covering codes with arbitrary alphabets
    Vu, V
    ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (01) : 65 - 70
  • [35] On the Concatenation of Non-Binary Random Linear Fountain Codes with Maximum Distance Separable Codes
    Blasco, Francisco Lazaro
    Liva, Gianluigi
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [36] Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes
    Shuxing Li
    Gennian Ge
    Designs, Codes and Cryptography, 2017, 84 : 359 - 372
  • [37] Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes
    Li, Shuxing
    Ge, Gennian
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (03) : 359 - 372
  • [38] On Maximal Distance Separable Codes
    万哲先
    谢邦杰
    东北数学, 1995, (03) : 257 - 259
  • [39] Smooth words over arbitrary alphabets
    Berthé, V
    Brlek, S
    Choquette, P
    THEORETICAL COMPUTER SCIENCE, 2005, 341 (1-3) : 293 - 310
  • [40] Exact analysis of bit error rate of maximum-distance-separable codes
    Zhang, LJ
    Gao, CY
    Cao, ZG
    GLOBECOM '00: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1- 3, 2000, : 816 - 819