Low rank representations for quantum simulation of electronic structure

被引:0
|
作者
Mario Motta
Erika Ye
Jarrod R. McClean
Zhendong Li
Austin J. Minnich
Ryan Babbush
Garnet Kin-Lic Chan
机构
[1] California Institute of Technology,Division of Chemistry and Chemical Engineering
[2] California Institute of Technology,Division of Engineering and Applied Sciences
[3] Google Inc.,Key Laboratory of Theoretical and Computational Photochemistry
[4] Ministry of Education,undefined
[5] College of Chemistry,undefined
[6] Beijing Normal University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The quantum simulation of quantum chemistry is a promising application of quantum computers. However, for N molecular orbitals, the O(N4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{4})$$\end{document} gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} gate complexity in small simulations, which reduces to O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{2})$$\end{document} gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{2})$$\end{document} depth on a linearly connected array, an improvement over the O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105 non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.
引用
收藏
相关论文
共 50 条
  • [41] Electronic structure of quantum dots
    Hines, C.
    McCarthy, S. A.
    Wang, J. B.
    Abbott, P. C.
    ICCN 2002: INTERNATIONAL CONFERENCE ON COMPUTATIONAL NANOSCIENCE AND NANOTECHNOLOGY, 2002, : 201 - 204
  • [42] QUANTUM SIMULATION OF ELECTRONIC RELAXATION IN SOLUTION
    ROSSKY, PJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 204 : 269 - PHYS
  • [43] Rank one representations
    Arehart, AB
    Wolovich, WA
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3791 - 3792
  • [44] Electronic structure of quantum spheres and quantum wires
    Xia, JB
    JOURNAL OF LUMINESCENCE, 1996, 70 : 120 - 128
  • [45] Structure of low-lying electronic states of NdO:: Quantum chemical calculations
    Allouche, A. R.
    Aubert-Frecon, M.
    Umanskiy, S. Ya.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (18):
  • [46] The number of monodromy representations of Abelian varieties of low p-rank
    Frankel, Brett
    JOURNAL OF ALGEBRA, 2018, 510 : 393 - 412
  • [48] Learning Edge Representations via Low-Rank Asymmetric Projections
    Abu-El-Haija, Sami
    Perozzi, Bryan
    Al-Rfou, Rami
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1787 - 1796
  • [49] Efficient SVM training using low-rank kernel representations
    Fine, S
    Scheinberg, K
    JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) : 243 - 264
  • [50] Robust low-rank image representations by deep matrix decompositions
    Yang, Chenxue
    Ye, Mao
    Li, Xudong
    Liu, Zijian
    Tang, Song
    Li, Tao
    ELECTRONICS LETTERS, 2014, 50 (24) : 1843 - U209