Low rank representations for quantum simulation of electronic structure

被引:0
|
作者
Mario Motta
Erika Ye
Jarrod R. McClean
Zhendong Li
Austin J. Minnich
Ryan Babbush
Garnet Kin-Lic Chan
机构
[1] California Institute of Technology,Division of Chemistry and Chemical Engineering
[2] California Institute of Technology,Division of Engineering and Applied Sciences
[3] Google Inc.,Key Laboratory of Theoretical and Computational Photochemistry
[4] Ministry of Education,undefined
[5] College of Chemistry,undefined
[6] Beijing Normal University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The quantum simulation of quantum chemistry is a promising application of quantum computers. However, for N molecular orbitals, the O(N4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{4})$$\end{document} gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} gate complexity in small simulations, which reduces to O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{2})$$\end{document} gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{2})$$\end{document} depth on a linearly connected array, an improvement over the O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105 non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.
引用
收藏
相关论文
共 50 条
  • [21] Learning Low-Rank Representations with Classwise Block-Diagonal Structure for Robust Face Recognition
    Li, Yong
    Liu, Jing
    Li, Zechao
    Zhang, Yangmuzi
    Lu, Hanqing
    Ma, Songde
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2810 - 2816
  • [22] Representations of a Noncommutative Associative Algebra Related to Quantum Torus of Rank Three
    Shang Yuan Lin
    Bin Xin
    Acta Mathematica Sinica, 2005, 21 : 1521 - 1524
  • [23] Representations of a noncommutative associative algebra related to quantum torus of rank three
    Lin, SY
    Xin, B
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (06) : 1521 - 1524
  • [24] Representations of a Noncommutative Associative Algebra Related to Quantum Torus of Rank Three
    Shang Yuan LIN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2005, 21 (06) : 1521 - 1524
  • [25] Low-Rank Kernel Space Representations in Prototype Learning
    Bunte, Kerstin
    Kaden, Marika
    Schleif, Frank-Michael
    ADVANCES IN SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, WSOM 2016, 2016, 428 : 341 - 353
  • [26] Low temperature dynamics of surface and bulk electronic structure of quantum dots
    Grandhi, G. Krishnamurthy
    Tomar, Renu
    Viswanatha, Ranjani
    MATERIALS RESEARCH EXPRESS, 2017, 4 (09):
  • [27] Direct limits of low-rank representations of classical groups
    Dvorsky, A
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (12) : 6011 - 6022
  • [28] REPRESENTATIONS OF LOW-RANK ORTHOSYMPLECTIC SUPERALGEBRAS BY SUPERFIELD TECHNIQUES
    FARMER, RJ
    JARVIS, PD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (03): : 473 - 487
  • [29] Unsupervised low-rank representations for speech emotion recognition
    Paraskevopoulos, Georgios
    Tzinis, Efthymios
    Ellinas, Nikolaos
    Giannakopoulos, Theodoros
    Potamianos, Alexandros
    INTERSPEECH 2019, 2019, : 939 - 943
  • [30] Learning Structured Low-rank Representations for Image Classification
    Zhang, Yangmuzi
    Jiang, Zhuolin
    Davis, Larry S.
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 676 - 683