Low rank representations for quantum simulation of electronic structure

被引:0
|
作者
Mario Motta
Erika Ye
Jarrod R. McClean
Zhendong Li
Austin J. Minnich
Ryan Babbush
Garnet Kin-Lic Chan
机构
[1] California Institute of Technology,Division of Chemistry and Chemical Engineering
[2] California Institute of Technology,Division of Engineering and Applied Sciences
[3] Google Inc.,Key Laboratory of Theoretical and Computational Photochemistry
[4] Ministry of Education,undefined
[5] College of Chemistry,undefined
[6] Beijing Normal University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The quantum simulation of quantum chemistry is a promising application of quantum computers. However, for N molecular orbitals, the O(N4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{4})$$\end{document} gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} gate complexity in small simulations, which reduces to O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{2})$$\end{document} gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{2})$$\end{document} depth on a linearly connected array, an improvement over the O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105 non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.
引用
收藏
相关论文
共 50 条
  • [31] Higher rank numerical ranges and low rank perturbations of quantum channels
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (02) : 843 - 855
  • [32] Molecular simulation investigation on the effect of pore structure on the wettability of low-rank coal
    Zhang, Lei
    Guo, Jianying
    Li, Bao
    Liu, Shengyu
    Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 2022, 51 (06): : 1117 - 1127
  • [33] Low rank approximation in simulations of quantum algorithms
    Ma, Linjian
    Yang, Chao
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 59
  • [34] Low-Rank Quantum State Preparation
    Araujo, Israel F.
    Blank, Carsten
    Araujo, Ismael C. S.
    da Silva, Adenilton J.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (01) : 161 - 170
  • [35] Low-rank factorization of electron integral tensors and its application in electronic structure theory
    Peng, Bo
    Kowalski, Karol
    CHEMICAL PHYSICS LETTERS, 2017, 672 : 47 - 53
  • [36] Diabatic and adiabatic representations: Electronic structure caveats
    Yarkony, David R.
    Xie, Changjian
    Zhu, Xiaolei
    Wang, Yuchen
    Malbon, Christopher L.
    Guo, Hua
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2019, 1152 : 41 - 52
  • [37] Electronic representations of conceptual models for simulation - A scoping review
    Alves, C. G.
    Furian, N.
    O'Sullivan, M.
    Walker, C. G.
    JOURNAL OF SIMULATION, 2024, 18 (01) : 100 - 118
  • [38] LOW RANK PERTURBATION OF WEIERSTRASS STRUCTURE
    De Teran, Fernando
    Dopico, Froilan M.
    Moro, Julio
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 538 - 547
  • [39] Low rank perturbation of Jordan structure
    Moro, J
    Dopico, FM
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) : 495 - 506
  • [40] Electronic structure of quantum dots
    Reimann, SM
    Manninen, M
    REVIEWS OF MODERN PHYSICS, 2002, 74 (04) : 1283 - 1342