Low rank perturbation of Jordan structure

被引:52
|
作者
Moro, J [1 ]
Dopico, FM [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
关键词
Jordan canonical form; matrix spectral perturbation theory;
D O I
10.1137/S0895479802417118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a matrix and lambda(0) be one of its eigenvalues having g elementary Jordan blocks in the Jordan canonical form of A. We show that for most matrices B satisfying rank (B) less than or equal to g, the Jordan blocks of A + B with eigenvalue lambda(0) are just the g - rank (B) smallest Jordan blocks of A with eigenvalue lambda(0). The set of matrices for which this behavior does not happen is explicitly characterized through a scalar determinantal equation involving B and some of the lambda(0)-eigenvectors of A. Thus, except for a set of zero Lebesgue measure, a low rank perturbation A + B of A destroys for each of its eigenvalues exactly the rank (B) largest Jordan blocks of A, while the rest remain unchanged.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 50 条
  • [1] LOW RANK PERTURBATION OF WEIERSTRASS STRUCTURE
    De Teran, Fernando
    Dopico, Froilan M.
    Moro, Julio
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 538 - 547
  • [2] Low rank perturbation of Kronecker structures without full rank
    De Teran, Fernando
    Dopico, Froilan M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 496 - 529
  • [3] Low rank perturbation of regular matrix polynomials
    De Teran, Fernando
    Dopico, Froilan M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 579 - 586
  • [4] Evaluations of multilinear polynomials on low rank Jordan algebras
    Malev, Sergey
    Yavich, Roman
    Shayer, Roee
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 2840 - 2845
  • [5] Vibrational isotope effect by the low rank perturbation method
    Zivkovic, TP
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2000, 28 (1-3) : 267 - 285
  • [6] Vibrational isotope effect by the low rank perturbation method
    Tomislav P. Živković
    Journal of Mathematical Chemistry, 2000, 28 : 267 - 285
  • [7] Low-Rank Matrix Fitting Based on Subspace Perturbation Analysis with Applications to Structure from Motion
    Jia, Hongjun
    Martinez, Aleix M.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (05) : 841 - 854
  • [8] Random perturbation of low rank matrices: Improving classical bounds
    O'Rourke, Sean
    Van Vu
    Wang, Ke
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 540 : 26 - 59
  • [9] Self-consistent field low rank perturbation method
    Horvat, D
    Dakovic, Z
    Zivkovic, TP
    CROATICA CHEMICA ACTA, 1999, 72 (04) : 945 - 952
  • [10] Perturbation analysis of low-rank matrix stable recovery
    Huang, Jianwen
    Wang, Jianjun
    Zhang, Feng
    Wang, Hailin
    Wang, Wendong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2021, 19 (04)