Low rank perturbation of Jordan structure

被引:52
|
作者
Moro, J [1 ]
Dopico, FM [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
关键词
Jordan canonical form; matrix spectral perturbation theory;
D O I
10.1137/S0895479802417118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a matrix and lambda(0) be one of its eigenvalues having g elementary Jordan blocks in the Jordan canonical form of A. We show that for most matrices B satisfying rank (B) less than or equal to g, the Jordan blocks of A + B with eigenvalue lambda(0) are just the g - rank (B) smallest Jordan blocks of A with eigenvalue lambda(0). The set of matrices for which this behavior does not happen is explicitly characterized through a scalar determinantal equation involving B and some of the lambda(0)-eigenvectors of A. Thus, except for a set of zero Lebesgue measure, a low rank perturbation A + B of A destroys for each of its eigenvalues exactly the rank (B) largest Jordan blocks of A, while the rest remain unchanged.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 50 条
  • [21] Jordan canonical form for finite rank elements in Jordan algebras
    Fernandez, Lopez, A.
    Garcia, Rus, E.
    Gomez, Lozano, M.
    Siles, Molina, M.
    Linear Algebra and Its Applications, 1997, 260 (1-3): : 151 - 167
  • [22] A Schatten-q low-rank matrix perturbation analysis via perturbation projection error bound
    Luo, Yuetian
    Han, Rungang
    Zhang, Anru R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 (630) : 225 - 240
  • [23] COMPUTING THE SQUARE ROOT OF A LOW-RANK PERTURBATION OF THE SCALED IDENTITY MATRIX
    Fasi, Massimiliano
    Higham, Nicholas J.
    Liu, Xiaobo
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (01) : 156 - 174
  • [24] EIGENVALUES OF THE REAL GENERALIZED EIGENVALUE EQUATION PERTURBED BY A LOW-RANK PERTURBATION
    ZIVKOVIC, TP
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1992, 9 (01) : 55 - 73
  • [25] AN IMPROVED MUSIC ALGORITHM BASED ON LOW RANK PERTURBATION OF LARGE RANDOM MATRICES
    Vallet, P.
    Hachem, W.
    Loubaton, P.
    Mestre, X.
    Najim, J.
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 689 - 692
  • [26] Rank computation in Euclidean Jordan algebras
    Orlitzky, Michael
    JOURNAL OF SYMBOLIC COMPUTATION, 2022, 113 : 181 - 192
  • [27] Bilinear Bandits with Low-rank Structure
    Jun, Kwang-Sung
    Willett, Rebecca
    Wright, Stephen
    Nowak, Robert
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [28] Ideal structure and C*-algebras of low rank
    Brown, Lawrence G.
    Pedersen, Gert K.
    MATHEMATICA SCANDINAVICA, 2007, 100 (01) : 5 - 33
  • [29] On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure
    Moro, J
    Burke, JV
    Overton, ML
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (04) : 793 - 817
  • [30] Jordan semi-triple mappings preserving rank and minimal rank
    Zhang, Xiuling
    Cui, Hongyan
    Hou, Jinchuan
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 273 - 276