The number of monodromy representations of Abelian varieties of low p-rank

被引:0
|
作者
Frankel, Brett [1 ]
机构
[1] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Local systems; Abelian varieties; Profinite groups; MATRICES;
D O I
10.1016/j.jalgebra.2018.05.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(g) be an abelian variety of dimension g and p-rank A < 1 over an algebraically closed field of characteristic p > 0. We compute the number of homomorphisms from pi(et)(1)(A(g), a) to GL(n)(F-q), where q is any power of p. We show that for fixed g, lambda, and n, the number of such representations is polynomial in q, and give an explicit formula for this polynomial. We show that the set of such homomorphisms forms a constructible set, and use the geometry of this space to deduce information about the coefficients and degree of the polynomial. In the last section we prove a divisibility theorem about the number of homomorphisms from certain semidirect products of profinite groups into finite groups. As a corollary, we deduce that when lambda = 0, #Hom(pi(et)(1)(A(g), a), GL(n)(F-q))/vertical bar GL(n)(F-q)vertical bar is a Laurent polynomial in q. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:393 / 412
页数:20
相关论文
共 50 条
  • [1] Alcoves and p-rank of abelian varieties
    Ngó, BC
    Genestier, A
    ANNALES DE L INSTITUT FOURIER, 2002, 52 (06) : 1665 - +
  • [2] On p-rank representations
    Stalder, N
    JOURNAL OF ALGEBRA, 2004, 280 (02) : 825 - 841
  • [3] Monodromy of the p-Rank Strata of the Moduli Space of Curves
    Achter, Jeffrey D.
    Pries, Rachel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [4] On the p-rank of tame kernel of number fields
    Sun, Chaochao
    Xu, Kejian
    JOURNAL OF NUMBER THEORY, 2016, 158 : 244 - 267
  • [5] LOCALLY FINITE REPRESENTATIONS OF GROUPS OF FINITE P-RANK
    CRAWLEYBOEVEY, WW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 : 17 - 25
  • [6] On the p-rank of Ext(A,B) for countable abelian groups A and B
    Saharon Shelah
    Lutz Strüngmann
    Israel Journal of Mathematics, 2014, 199 : 567 - 572
  • [7] On the p-rank of Ext(A,B) for countable abelian groups A and B
    Shelah, Saharon
    Struengmann, Lutz
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (02) : 567 - 572
  • [8] JUMPS AND MONODROMY OF ABELIAN VARIETIES
    Halle, Lars Halvard
    Nicaise, Johannes
    DOCUMENTA MATHEMATICA, 2011, 16 : 937 - 968
  • [9] On the p-rank of Ext
    Mekler, A
    Roslanowski, A
    Shelah, S
    ISRAEL JOURNAL OF MATHEMATICS, 1999, 112 (1) : 327 - 356
  • [10] Constructing abelian varieties from rank 2 Galois representations
    Krishnamoorthy, Raju
    Yang, Jinbang
    Zuo, Kang
    COMPOSITIO MATHEMATICA, 2024, 160 (04) : 709 - 731