Stability Near Hydrostatic Equilibrium to the 2D Boussinesq Equations Without Thermal Diffusion

被引:0
|
作者
Lizheng Tao
Jiahong Wu
Kun Zhao
Xiaoming Zheng
机构
[1] University of California,Department of Mathematics
[2] Oklahoma State University,Department of Mathematics
[3] Tulane University,Department of Mathematics
[4] Central Michigan University,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper furthers our studies on the stability problem for perturbations near hydrostatic equilibrium of the 2D Boussinesq equations without thermal diffusion and solves some of the problems left open in Doering et al. (Physica D 376(377):144–159, 2018). We focus on the periodic domain to avoid the complications due to the boundary. We present several results at two levels: the linear stability and the nonlinear stability levels. Our linear stability results state that the velocity field u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {u}$$\end{document} associated with any initial perturbation converges uniformly to 0 and the temperature θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} converges to an explicit function depending only on y as t tends to infinity. In addition, we obtain an explicit algebraic convergence rate for the velocity field in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-sense. Our nonlinear stability results state that any initial velocity small in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} and any initial temperature small in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} lead to a stable solution of the full nonlinear perturbation equations in large time. Furthermore, we show that the temperature is eventually stratified and converges to a function depending only on y if we know it admits a certain uniform-in-time bound. An explicit decay rate for the velocity in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} is also ensured if we make assumption on the high-order norms of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {u}$$\end{document} and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}.
引用
收藏
页码:585 / 630
页数:45
相关论文
共 50 条
  • [21] On stability of Boussinesq equations without thermal conduction
    Dong, Lihua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [22] Asymptotic stability of the 2D MHD equations without magnetic diffusion
    Dong, Lihua
    Ren, Xiaoxia
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)
  • [23] Stability of 3D perturbations near a special 2D solution to the rotating Boussinesq equations
    Ma, Liangliang
    Wu, Jiahong
    Zhang, Qian
    STUDIES IN APPLIED MATHEMATICS, 2022, 148 (04) : 1624 - 1655
  • [24] Global regularity of solutions of 2D Boussinesq equations with fractional diffusion
    Xu, Xiaojing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 677 - 681
  • [25] The 2D inviscid Boussinesq equations with fractional diffusion in bounded domain
    Xu, Xiaojing
    Zhong, Yueyuan
    Zhu, Ning
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 69
  • [26] 2D Voigt Boussinesq Equations
    Mihaela Ignatova
    Journal of Mathematical Fluid Mechanics, 2024, 26
  • [27] Stability and enhanced decay rate for 3D anisotropic Boussinesq equations near the hydrostatic balance
    Cheng, Jianfeng
    Ji, Ruihong
    Tian, Ling
    Wu, Jiahong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 425 : 300 - 341
  • [28] 2D Voigt Boussinesq Equations
    Ignatova, Mihaela
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (01)
  • [29] Stability of the 2D anisotropic Boussinesq equations with mixed partial dissipation
    Ma, Liangliang
    Li, Lin
    Liu, Dongbing
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (10)
  • [30] UNIQUENESS OF WEAK SOLUTIONS TO THE BOUSSINESQ EQUATIONS WITHOUT THERMAL DIFFUSION
    Boardman, Nicole
    Ji, Ruihong
    Qiu, Hua
    Wu, Jiahong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (06) : 1595 - 1624