Stability Near Hydrostatic Equilibrium to the 2D Boussinesq Equations Without Thermal Diffusion

被引:0
|
作者
Lizheng Tao
Jiahong Wu
Kun Zhao
Xiaoming Zheng
机构
[1] University of California,Department of Mathematics
[2] Oklahoma State University,Department of Mathematics
[3] Tulane University,Department of Mathematics
[4] Central Michigan University,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper furthers our studies on the stability problem for perturbations near hydrostatic equilibrium of the 2D Boussinesq equations without thermal diffusion and solves some of the problems left open in Doering et al. (Physica D 376(377):144–159, 2018). We focus on the periodic domain to avoid the complications due to the boundary. We present several results at two levels: the linear stability and the nonlinear stability levels. Our linear stability results state that the velocity field u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {u}$$\end{document} associated with any initial perturbation converges uniformly to 0 and the temperature θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} converges to an explicit function depending only on y as t tends to infinity. In addition, we obtain an explicit algebraic convergence rate for the velocity field in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-sense. Our nonlinear stability results state that any initial velocity small in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} and any initial temperature small in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} lead to a stable solution of the full nonlinear perturbation equations in large time. Furthermore, we show that the temperature is eventually stratified and converges to a function depending only on y if we know it admits a certain uniform-in-time bound. An explicit decay rate for the velocity in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} is also ensured if we make assumption on the high-order norms of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {u}$$\end{document} and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}.
引用
收藏
页码:585 / 630
页数:45
相关论文
共 50 条
  • [41] Optimal decay for the 3D anisotropic Boussinesq equations near the hydrostatic balance
    Ruihong Ji
    Li Yan
    Jiahong Wu
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [42] GLOBAL REGULARITY CRITERIA OF THE 3D MHD-BOUSSINESQ EQUATIONS WITHOUT THERMAL DIFFUSION
    Guo, Zhengguang
    Zhang, Zunzun
    Zhao, Caidi
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (05) : 1347 - 1360
  • [43] Stability of the 3D MILD equations without vertical dissipation near an equilibrium
    Ji, Ruihong
    Jiang, Liya
    Luo, Wen
    AIMS MATHEMATICS, 2023, 8 (05): : 12143 - 12167
  • [44] Optimal decay for the 3D anisotropic Boussinesq equations near the hydrostatic balance
    Ji, Ruihong
    Yan, Li
    Wu, Jiahong
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [45] Stability and large time behavior of the 2D Boussinesq equations with velocity supercritical dissipation
    Yuan, Baoquan
    Li, Changhao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 927 - 952
  • [46] Stability of stationary solutions to 2D Boussinesq equations with partial dissipation on a flat strip
    Chen, Dongxiang
    Li, Xiaoli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 215
  • [47] Stability and large-time behavior of the 2D Boussinesq equations with partial dissipation
    Lai, Suhua
    Wu, Jiahong
    Zhong, Yueyuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 271 : 764 - 796
  • [48] On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term
    Castro, Angel
    Cordoba, Diego
    Lear, Daniel
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (07): : 1227 - 1277
  • [49] Stability for the 2D magnetic Bénard system with partial dissipation and thermal damping near an equilibrium
    Mao, Jingjing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5458 - 5473
  • [50] H?lder continuous weak solutions of the 2D Boussinesq equation with thermal diffusion
    Tianwen Luo
    Tao Tao
    Liqun Zhang
    Science China(Mathematics), 2024, 67 (08) : 1777 - 1806