Stability Near Hydrostatic Equilibrium to the 2D Boussinesq Equations Without Thermal Diffusion

被引:0
|
作者
Lizheng Tao
Jiahong Wu
Kun Zhao
Xiaoming Zheng
机构
[1] University of California,Department of Mathematics
[2] Oklahoma State University,Department of Mathematics
[3] Tulane University,Department of Mathematics
[4] Central Michigan University,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper furthers our studies on the stability problem for perturbations near hydrostatic equilibrium of the 2D Boussinesq equations without thermal diffusion and solves some of the problems left open in Doering et al. (Physica D 376(377):144–159, 2018). We focus on the periodic domain to avoid the complications due to the boundary. We present several results at two levels: the linear stability and the nonlinear stability levels. Our linear stability results state that the velocity field u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {u}$$\end{document} associated with any initial perturbation converges uniformly to 0 and the temperature θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} converges to an explicit function depending only on y as t tends to infinity. In addition, we obtain an explicit algebraic convergence rate for the velocity field in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-sense. Our nonlinear stability results state that any initial velocity small in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} and any initial temperature small in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} lead to a stable solution of the full nonlinear perturbation equations in large time. Furthermore, we show that the temperature is eventually stratified and converges to a function depending only on y if we know it admits a certain uniform-in-time bound. An explicit decay rate for the velocity in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} is also ensured if we make assumption on the high-order norms of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {u}$$\end{document} and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}.
引用
收藏
页码:585 / 630
页数:45
相关论文
共 50 条