2D Voigt Boussinesq Equations

被引:0
|
作者
Mihaela Ignatova
机构
[1] Temple University,Department of Mathematics
关键词
Boussinesq; Voigt regularization; Global existence; 35Q30; 35Q35; 35Q92;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a critical conservative Voigt regularization of the 2D incompressible Boussinesq system on the torus. We prove the existence and uniqueness of global smooth solutions and their convergence in the smooth regime to the Boussinesq solution when the regularizations are removed. We also consider a range of mixed (subcritical–supercritical) Voigt regularizations for which we prove the existence of global smooth solutions.
引用
收藏
相关论文
共 50 条
  • [1] 2D Voigt Boussinesq Equations
    Ignatova, Mihaela
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (01)
  • [2] GLOBAL REGULARITY OF 2D BOUSSINESQ-VOIGT EQUATIONS
    Gong, Menghan
    Ye, Zhuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2025, 23 (02) : 561 - 582
  • [3] Global dynamics of 2D Boussinesq equations
    You, YC
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) : 4643 - 4654
  • [4] Regularity Criterion for the 2D Inviscid Boussinesq Equations
    Menghan Gong
    Zhuan Ye
    Journal of Mathematical Fluid Mechanics, 2023, 25
  • [5] Regularity Criterion for the 2D Inviscid Boussinesq Equations
    Gong, Menghan
    Ye, Zhuan
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (04)
  • [6] The 2D Boussinesq equations with logarithmically supercritical velocities
    Chae, Dongho
    Wu, Jiahong
    ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 1618 - 1645
  • [7] An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations
    Dongho Chae
    Peter Constantin
    Jiahong Wu
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 473 - 480
  • [8] The 2D Boussinesq equations with vertical viscosity and vertical diffusivity
    Adhikari, Dhanapati
    Cao, Chongsheng
    Wu, Jiahong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (05) : 1078 - 1088
  • [9] Blowup with vorticity control for a 2D model of the Boussinesq equations
    Hoang, V.
    Orcan-Ekmekci, B.
    Radosz, M.
    Yang, H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (12) : 7328 - 7356
  • [10] An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations
    Chae, Dongho
    Constantin, Peter
    Wu, Jiahong
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (03) : 473 - 480