Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators

被引:0
|
作者
Shan Gao
Donghua Shi
Dmitry V. Zenkov
机构
[1] Beijing Institute of Technology,Beijing Key Laboratory on MCAACI, School of Mathematics and Statistics
[2] North Carolina State University,Department of Mathematics
来源
关键词
Exact integrators; Hamel’s equations; Nonholonomic systems; Momentum; Symmetry; 70F25; 37J60; 70H33;
D O I
暂无
中图分类号
学科分类号
摘要
Exact variational integrators were exposed in the context of Lagrangian mechanics in Marsden and West (2001). These integrators sample the trajectories of holonomic mechanical systems and are useful for developing practical mechanical integrators. This paper introduces an exact variational integrator for Hamel’s equations, which are interpreted as a noncanonical form of Hamilton’s equations. This exact Hamel integrator is then adopted for a systematic construction of low-order constraint-preserving integrators for nonholonomic mechanical systems.
引用
收藏
相关论文
共 50 条
  • [1] Discrete Hamiltonian Variational Mechanics and Hamel's Integrators (vol 33, 26, 2023)
    Gao, Shan
    Shi, Donghua
    Zenkov, Dmitry V.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (02)
  • [2] Discrete Hamiltonian variational integrators
    Leok, Melvin
    Zhang, Jingjing
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1497 - 1532
  • [3] Discrete Hamiltonian variational integrators
    Department of Mathematics, University of California, 9500 Gilman Drive, San Diego, CA 92093-0112, United States
    不详
    IMA J. Numer. Anal., 4 (1497-1532):
  • [4] Stochastic discrete Hamiltonian variational integrators
    Holm, Darryl D.
    Tyranowski, Tomasz M.
    BIT NUMERICAL MATHEMATICS, 2018, 58 (04) : 1009 - 1048
  • [5] Stochastic discrete Hamiltonian variational integrators
    Darryl D. Holm
    Tomasz M. Tyranowski
    BIT Numerical Mathematics, 2018, 58 : 1009 - 1048
  • [6] Hamel's Formalism and Variational Integrators on a Sphere
    Zenkov, Dmitry V.
    Leok, Melvin
    Bloch, Anthony M.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 7504 - 7510
  • [7] Variational integrators in discrete vakonomic mechanics
    Pedro L. García
    Antonio Fernández
    César Rodrigo
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 137 - 159
  • [8] Variational integrators in discrete vakonomic mechanics
    Garcia, Pedro L.
    Fernandez, Antonio
    Rodrigo, Cesar
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 137 - 159
  • [9] Discrete variational Hamiltonian mechanics
    Lall, S.
    West, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19): : 5509 - 5519
  • [10] Spectral variational integrators for semi-discrete Hamiltonian wave equations
    Li, Yiqun
    Wu, Boying
    Leok, Melvin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 325 : 56 - 73